
Goblint: Path-sensitive Data Race Analysis

Vesal Vojdani Varmo Vene

University of Tartu

Introduction

What is Goblint?
General
– A general analysis framework
O’Caml
– Analyses are specified in Objective Caml
– (But it analyzes C code)
Brogram
– Means ”program” in Persian dialect of Estonian . . .
Linter
– Such as splint

Introduction

What is Goblint?
Goblint is a static analyzer for Posix-threaded C
Focused on detecting multiple access data races
Integrates with Eclipse C develpment environment
Aims to be sound (ie. must detect all errors, but may give
false alarms)
Aims to be efficient enough to be able to analyze
medium-to-large scale programs (� 100 kLOC)
Aims to be precise enough to be able to analyze
medium-to-large scale programs (� 100 kLOC)

Introduction

Main conflicts
Soundness vs. C
Efficiency vs. Precision

Soundness vs. C
Restrict to the ”safe” subset of C:

no setjmp and getjmp;
no dynamic data structures;
no recursion;
. . .

Not as bad as it looks:
we can still handle
these constructs,
but do not guarantee
the soundness.

Introduction

Main conflicts
Soundness vs. C
Efficiency vs. Precision

Soundness vs. C
Restrict to the ”safe” subset of C:

no setjmp and getjmp;
no dynamic data structures;
no recursion;
. . .

Not as bad as it looks:
we can still handle
these constructs,
but do not guarantee
the soundness.

Introduction

Main conflicts
Soundness vs. C
Efficiency vs. Precision

Soundness vs. C
Restrict to the ”safe” subset of C:

no setjmp and getjmp;
no dynamic data structures;
no recursion;
. . .

Not as bad as it looks:
we can still handle
these constructs,
but do not guarantee
the soundness.

Introduction

Main conflicts
Soundness vs. C
Efficiency vs. Precision

Efficiency vs. Precision
We adopt normal data flow analysis techniques, but

use functional approach to distinguish calling contexts,
use dynamically adjustable path-sensitive analysis;
use global invariant based concurrent analysis.

General framework

Stages of the analysis
Transform the program to CFG
Transform CFG to a constraint system
Solve the constraint system

Example

int main () {
int rnd ;
int x ;
i f (rnd)

x = 3 ;
else

x = 7 ;
return 0 ;

}

1

2 3

4

5

main

rnd = 0? rnd 6= 0?

x 7 x 3

ret 0

General framework

Stages of the analysis
Transform the program to CFG
Transform CFG to a constraint system
Solve the constraint system

Example

int main () {
int rnd ;
int x ;
i f (rnd)

x = 3 ;
else

x = 7 ;
return 0 ;

}

1

2 3

4

5

main

rnd = 0? rnd 6= 0?

x 7 x 3

ret 0

General framework

Stages of the analysis
Transform the program to CFG
Transform CFG to a constraint system
Solve the constraint system

Example

1

2 3

4

5

main

rnd = 0? rnd 6= 0?

x 7 x 3

ret 0

X1 w R0(>)
X2 w R1(X1)
X3 w R2(X1)
X4 w R3(X2)

F
R4(X3)

X5 w R5(X4)

General framework

Stages of the analysis
Transform the program to CFG
Transform CFG to a constraint system
Solve the constraint system

Example

X1 w R0(>)
X2 w R1(X1)
X3 w R2(X1)
X4 w R3(X2)

F
R4(X3)

X5 w R5(X4)

X1 = S1
X2 = S2
X3 = S3
X4 = S4
X5 = S5

General framework

Simplified Constraint System

n 2 N (nodes of CFG)
d 2 D (abstract program states)
hn; di 2 V = N� D (variables of constraint system)
R : (V ! D) ! D (transfer functions = RHS-s of CS)

Note
The system is infinite!!
It can be (partially) solved using demand-driven solvers.
(Fecht & Seidl, 1999)

Context-sensitivity

Example

void s a f e I n c (int �v , pthread_mutex �m) {
pthread_mutex_lock (m) ;
v++;
pthread_mutex_unlock (m) ;

}

Functional approach to interprocedural analysis

f 2 F (function names)
V = fN [Fg � D (variables of constraint system)

A variable hf; di denotes function call together with the
entry state.
NB! Does not behave well with recursion!

Context-sensitivity

Example

void s a f e I n c (int �v , pthread_mutex �m) {
pthread_mutex_lock (m) ;
v++;
pthread_mutex_unlock (m) ;

}

Functional approach to interprocedural analysis

f 2 F (function names)
V = fN [Fg � D (variables of constraint system)

A variable hf; di denotes function call together with the
entry state.
NB! Does not behave well with recursion!

Path-sensitivity

man gcc on “-Wuninitialized”
These warnings are made optional because GCC is not smart
enough to see all the reasons why the code might be correct
despite appearing to have an error . . .

Here is another common case:

int save_y ;
i f (change_y) save_y = y , y = new_y ;
. . .
i f (change_y) y = save_y ;

This has no bug because "save_y" is used only if it is set.

Path-sensitivity

Example

int save_y ;
i f (change_y) save_y = y , y = new_y ;
. . .
i f (change_y) y = save_y ;

What is the problem?
There are 4 potential execution paths.
Only 2 are logically possible.
We need to distinguish execution paths.
In general, there are an infinite number of paths!

Path-sensitivity

Example

int save_y ;
i f (change_y) save_y = y , y = new_y ;
. . .
i f (change_y) y = save_y ;

Possible solution
Instead of states use their powersets, but these might be
infinite.
One could try to use powersets with fixed maximum
cardinality, but this is not only ugly but also very
inefficient!

Path-sensitivity

Example

int save_y ;
i f (change_y) save_y = y , y = new_y ;
. . .
i f (change_y) y = save_y ;

Our solution
We only track the paths that are relevant to the analysis
result.
In this example, paths are relevant when the set of
uninitialized variables are different.
In general, relevance depends on the user-analysis. . .

Path-sensitivity

Dynamically adjustable path-sensitivity

Db (abstract base state)
Dl (abstract user state)
D = Dl ! Db (abstract state)

We implement this as a power domain D = P(Db � Dl),
where the least upper bound merges the first components
for identical states of the second.
Note: if user domain Dl is finite, the D is also finite.

Concurrent Analysis

State explosion
Precise concurrent analysis leads to state explosion.
Eg. if there are two threads with 10 instructions each, then
there are 184756 possible interleavings!

Global invariant based concurrent analysis
Separate shared (ie. global) and local variables.
Compute a single invariant for global state.
Essentially, join all possible values in all program points.
Now all threads can be analyzed sequentially.
Very imprecise for base domain, but works well with user
domains like lock-sets.
Variant: compute the invariant only after the creation of
the first thread.
(Seidl & Vene & Müller Olm, 2003).

Concurrent Analysis

State explosion
Precise concurrent analysis leads to state explosion.
Eg. if there are two threads with 10 instructions each, then
there are 184756 possible interleavings!

Global invariant based concurrent analysis
Separate shared (ie. global) and local variables.
Compute a single invariant for global state.
Essentially, join all possible values in all program points.
Now all threads can be analyzed sequentially.
Very imprecise for base domain, but works well with user
domains like lock-sets.
Variant: compute the invariant only after the creation of
the first thread.
(Seidl & Vene & Müller Olm, 2003).

Experimental results

Small open source benchmarks
aget — a wget clone
pfscan — a parallel file scanner
knot — a web server
ctrace — a sample program of ctrace library
smtprc — a mail relay scanner

Benchmark Size (kloc) Time (s) Warnings Unguarded
aget 1.2 0.2 5 3
pfscan 1.3 0.4 0 0 (1)
knot 1.3 0.2 4 4 (6)
ctrace 1.4 0.3 2 0
smtproc 5.7 7.8 4 0

Conclusions

Ongoing and further works
Equality analysis of addresses (with H.Seidl);
Scalability improvements;
Adding new analyses (eg. variable initialization,
open-use-close analysis, etc.);
Better handling of external functions;
. . .

Additional information
Goblint has an Open Source license
You can download it from web:
http://goblin.at.mt.ut.ee/goblint/tracker/

http://goblin.at.mt.ut.ee/goblint/tracker/

	Introduction
	General framework
	Context-sensitivity
	Path-sensitivity
	Concurrent Analysis
	Experimental results
	Conclusions

