
The joy of cats in functional programming

Tarmo Uustalu, Institute of Cybernetics

joint with
Varmo Vene, U of Tartu

Thorsten Altenkirch, U of Nottingham
Venanzio Capretta, Radboud U Nijmegen

Robin Cockett, U of Calgary
Neil Ghani, U of Nottingham
Makoto Hamana, U of Tokyo

Ichiro Hasuo, Bart Jacobs, Radboud U Nijmegen
Alberto Pardo, U de la República, Montevideo

Final workshop of CDC, Tallinn, 21–22 Jan. 2008



What is this about?

Functional programming (in cool languages like in Haskell,
OCaml) is about programming with mathematical functions or
almost so.

We believe in mathematical structures in functional
programming, both in data and control.

We believe these structures are older than us, they are there
to be discovered rather than invented.

Moreover, it often amounts to rediscovering what was already
known in category theory.

Your program is not good until it is structured well. Especially
if you want to reuse it, show it to a friend or reason about it.

We believe in no less, believe it or not!

So we need to care about the right structures.



Category theory

This is mathematics about categories, functors, natural
transformations and the like.

Related to algebra, but far more general.

Glasses to see ever-repeating structures clearly.

You can think of your type and program denotations as living
in categories, e.g.,
sets and functions, in the case of simply typed lambda calculus
pers, in the case of parametric polymorphism
cpos, in the case of nontermination from general recursion

The fun is to see the same thing again and say, hey, I know
how this works!

(Do you see why?)

In a slightly more syntax-driven mindmode, type theorists are
often concerned about the same things as categorical program
semanticists.



Haskell ”humor”

The evolution of a Haskell programmer by Fritz Ruehr
(http://www.willamette.edu/∼fruehr/haskell/evolution.html)

Freshman Haskell programmer

fac n = if n == 0

then 1

else n * fac (n-1)

Junior Haskell programmer (beginning Peano player)

fac 0 = 1

fac (n+1) = (n+1) * fac n

Senior Haskell programmer (voted for Nixon, Buchanan, Bush,
“leans right”)

fac n = foldr (*) 1 [1..n]

Memoizing Haskell programmer (takes Ginkgo Biloba daily):

facs = scanl (*) 1 [1..]

fac n = facs !! n



Post-doc Haskell programmer (from Uustalu, Vene and
Pardo’s Recursion Schemes from Comonads, NJC 2001)

-- explicit type recursion with functors and catamorphisms

newtype Mu f = In (f (Mu f))

unIn (In x) = x

cata phi = phi . fmap (cata phi) . unIn

-- base functor and data type for natural numbers

data N c = Z | S c add m = cata phi where

phi Z = m

instance Functor N where phi (S f) = suck f

fmap g Z = Z

fmap g (S x) = S (g x) mult m = cata phi where

phi Z = zero

type Nat = Mu N phi (S f) = add m f

zero = In Z

suck n = In (S n)



-- explicit products and their functorial action

data Prod e c = Pair c e fork f g x = Pair (f x) (g x)

outl (Pair x y) = x instance Functor (Prod e) where

outr (Pair x y) = y fmap g = fork (g . outl) outr

-- comonads, the categorical "opposite" of monads

class Functor n => Comonad n where instance Comonad (Prod e) where

extr :: n a -> a extr = outl

dupl :: n a -> n (n a) dupl = fork id outr

-- generalized catamorphisms, zygomorphisms and paramorphisms

gcata :: (Functor f, Comonad n) =>

(forall a. f (n a) -> n (f a)) -> (f (n c) -> c) -> Mu f -> c

gcata dist phi = extr . cata (fmap phi . dist . fmap dupl)

zygo chi = gcata (fork (fmap outl) (chi . fmap outr))

para :: Functor f => (f (Prod (Mu f) c) -> c) -> Mu f -> c

para = zygo In



. . . and finally

-- factorial, the *hard* way!

fac = para phi where

phi Z = suck zero

phi (S (Pair f n)) = mult f (suck n)

-- for convenience and testing

int = cata phi where instance Show (Mu N) where

phi Z = 0 show = show . int

phi (S f) = 1 + f

Tenured professor (teaching Haskell to freshmen)

fac n = product [1..n]



Less ”humorous”

For less sarkastic expressions of appreciation read, eg,
http://www.haskell.org/haskellwiki/Research papers/
Monads and arrows

http://www.haskell.org/haskellwiki/Lucid
http://www.haskell.org/haskellwiki/Zipper

or
http://sigfpe.blogspot.com/2006/06/monads-kleisli-
arrows-comonads-and.html

and further entries on Dan Piponi (aka Sigfpe’s) blog

or
related entries on Lambda the Ultimate.

(To disillusion you: You can’t really improve our citation
records with TKN by visiting these pages. . . )



Rest of this talk

Briefly about what we did 2002-07:

Structured recursion:

structured recursion schemes from comonads (ie postdoc
programming), recursive coalgebras
Mendler recursion, aka type-based termination, aka circular
proofs
foundations for shortcut deforestation

Effects and context-dependence:

combining monadic effects
nontermination as a monadic effect
context-dependence via comonads (CDC)



Recursion schemes from comonads (U, Vene, Pardo)

Recursion in total (terminating/productive) programming, as
in sets and functions, is only possible in relation to
inductive/coinductive types or families.

Categorically, inductive types (such as the types of naturals,
lists, trees of various flavors etc) are initial algebras of
endofunctors (= initial algebras given by signatures in
universal algebra).

The most basic form of recursion (known as iteration in
recursion theory, fold in FP) corresponds to the (defining)
unique homomorphism property of initial algebras:
For an endofunctor F with an initial algebra (µF , inF ), we
have

F (µF )
inF //

Ff
��

µF

fold(φ)=df∃!f

��
FC

∀φ // C



We proved this powerful generic function definition scheme, a
many-in-one recursion scheme parametrized by a recursive call
pattern captured in a comonad and distributive law:
Given an endofunctor F with an initial algebra (µF , inF ) and a
D with a distributive law of F over D, we have

F (D(µF ))

F (Df )
��

F (µF )
F ιoo inF // µF

∃!f

��
F (DC )

∀φ // C

where (µF , ι) is a specific E-M coalgebra of the comonad,
induced by the distributive law. A comonad is an endofunctor
with additional data and properties.

Postdoc factorial is but one example . . . and slightly past the
point.

Beyond primitive recursion, it covers course-of-value recursion,
recursion with subsidiary simultaneous recursions on
structurally smaller arguments etc.



Recursive coalgebras (Capretta, U, Vene)

The algebra structure inF of an initial F -algebra is an
isomorphism.

In fact, recursion is more about its inverse, a coalgebra (a
carrier with observations rather than operations)!

Stepping back and following Osius ’70s, we defined any
F -coalgebra (A, α) to be recursive (supporting recursion) if it
satisfies

FA

Ff
��

A

∃!f
��

αoo

FC
∀φ // C

We identified a number of ways for constructing recursive
coalgebras out of coalgebras already known to be recursive.

These included a construction based on comonads and
distributive laws, generalizing ”recursion schemes from
comonads” to coalgebras other than inverses of initial
algebras.



Mendler-style recursion, aka type-based termination, aka
circular proofs (U, Vene, Cockett)

Programming with recursors defined by properties such as
initiality, ”recursion schemes from comonads” is cumbersome.

In actual FP, one wants to program with something closer to
general recursion, even if it must be well-behaved.

So our recursors need some fine-tuning to be usable.

We explored the idea (proposed in type theory by Mendler
’87) to induce maps µF → C not by maps φ : FC → C but by
natural transformations ΦY : C(Y ,C ) → C(FY ,C ), for fold.
By Yoneda lemma, these are in natural bijection.



This gives indeed a program construct which behaves
(seemingly) similarly to a general recursor.

Checking conformance of what a priori is a general recursion
to the fold scheme becomes type-checking. Instead of just
admitting the general recursion typing
C(µF ,C ) → C(F (µF ),C ) we require the recursive definition
body to admit the more general type C(Y ,C ) → C(FY ,C ).

This extends to other recursion schemes.

Ultimately, Mendler-style recursion from the cofree recursive
comonad is equivalent to what are known as ”circular proofs”.

Circular proofs is a codename for proof systems with a notion
of proof that accepts progressive infinite paths in proof trees,
studied eg by Santocanale, now promoted by Brotherston &
Simpson.



Shortcut fusion: build and augment (U, Vene, Ghani)

Something similar appears in shortcut deforestation, a
program transformation for eliminating intermediate
datastructures.

Instead of taking inF : F (µF ) → µF to be the basic means to
construct data in µF , one can take an operation known as
build to be basic.

Build is an operation taking a strongly dinatural
transformation ΘX : C(FX → X ) → C(A → X ) to a map
A → µF .

Shortcut fusion is based on this rule:
fold(φ : FC → C ) ◦ build(Θ) = ΘC (φ).

We gave a category-theoretic explanation of build and
shortcut fusion in terms of limits of an algebra-structure
forgetting functors.

Moreover, we gave a general monad-based account of what
had been ad hoc extension of build, called augment.



Combining monadic effects (Ghani, U)

It is common in functional programming and mathematical
program semantics to abstract effects into monads.

A monad is a functor (type constructor) together with two
natural transformations (polymorphic functions), with some
specific properties.

In particular, if T is a monad on some base category C, it
defines a category called the Kleisli category whose objects are
those of C but maps A → B are maps A → TB of C.
Seeing TB as the type of effectful computations of values of
B, maps A → TB become effectful functions. The monad
tells what the identities of effectful functions are and how they
compose.

Eg, exception-raising functions A → B are really maps
A → B + E , ie, Kleisli maps for TB =df B + E ,
stateful functions A → B are really maps A× S → B × S .
These are in bijection with maps A → S ⇒ B × S , which are
Kleisli maps for TB =df S ⇒ B × S .



It is tricky to combine effects.

Some canonical ways are distributive laws (exists between
some monads) and coproduct of monads.

Computing the coproduct of two comonads is tedious in
general (it’s nothing like the coproduct of functors, which is
computed pointwise).

We gave a specific construction for ideal monads, ie, monads
of the form TA =df A + T ′A with the unit given by left
injection and multiplication restricting to T ′ in an appropriate
sense.

This covers quite a few examples, eg nondeadlocking
nondeterminism and probabilistic choice.



Nontermination as a monadic effect rather than defect
(Capretta, Altenkirch, U)

Type-theorists cannot accept that pure functions may fail to
terminate.

Or more exactly, it is free general recursion and even more
basically looping that are problematic. (Programs are proofs
and you better don’t prove anything by general recursion.)

This can be remedied by paying for loops: computation takes
time.

Nontermination then becomes a monadic effect as any other.

The monad is TA =df νX .A + X (the final coalgebra of
X 7→ A + X , exists in sets) implemented in Haskell by

data Delay a = Now a | Later (Delay a) -- read coinductively

instance Monad Delay where

return a = Now a

Now a >>= k = k a

(Later c) >>= k = Later (c >>= k)



One can define a never-terminating computation and an
(unfair) race of two computations:

never :: Delay a

never = Later never

race :: Delay a -> Delay a -> Delay a

race (Now a) c = Now a

race (Later c) (Now a) = Now a

race (Later c) (Later c’) = Later (race c c’)

Further one gets a looping (”iteration”) combinator and a
general recursor that fit into sets-like settings.

One can quotient T by equating computations that differ by a
finite wait.

This gives a denotational semantics for languages with general
recursion without involving cpos (in fact this is untrue, as the
Kleisli category is a cpo-category).

Moreover, nontermination as an effect thus defined can be
combined with other effects in standard ways (distributive
laws, coproduct of monads).



Context-dependence via comonads (U, Vene)

If monads can be used to structure effectful notions of
computation, is there a similar use for the formal dual,
comonads?

The answer is yes: comonads capture notions of
context-dependence.

Given a comonad D on a base category C, maps DA → B of C
are maps A → B of the coKleisli category, with identities and
composition.
DA can be thought of as the the type of values of A
embedded in a context. The coKleisli category is then the
category of context-dependent functions.

For DA =df (Nat ⇒ A)× A, these maps
(Nat ⇒ A)× Nat → B are in bijection with maps
Nat ⇒ A → Nat ⇒ B, ie, maps StrA → StrB, general stream
functions (which can represent discrete-time dignal
transformers). The coKleisli identities and composition agree
with those of stream functions.



Causal stream functions are captured by DA =df ListA× A
with the 1st component for the past of the signal and the 2nd
component the present.

General tree relabellings are captured by trees-with-a-position
(zipper) comonad.

Further examples are eg cellular automata (Game of Life).

This gives a foundation for a generic denotational semantics
of (higher-order) languages for context-dependent
computation (dataflow languages à la Lucid, Lustre/Lucid
Synchrone, attribute grammars etc).



Conclusion

Structure abounds in functional computation. It’s only to be
surfaced and exploited (so it can then be pushed to the
background again).

Here, comonads and monads were central, but this is more of
an incident than rule.


