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Motivation

Consider Haskell datatype

data PTree = Node {

name :: String ,

birth :: Int ,

mother :: Maybe PTree,

father :: Maybe PTree

}

able to model family trees such as eg.

Margaret, b. 1923 Luigi, b. 1920

Mary, b. 1956 Joseph, b. 1955

SSSSSS
mmmmmm

Peter, b. 1991

SSSSSS
kkkkkk

What if the same model is to be built in C/C++ ?
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Motivation

The model
becomes
“more
concrete” as
we go down
to such
programming
level;

• Margaret

1923

NIL

NIL

Mary

1956

NIL

NIL

Joseph

1955

•

•

Peter

1991

•

•

Luigi

1920

NIL

NIL

Trees get
converted to
pointer

structures
stored in
dynamic
heaps.
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A glimpse at the heap/pointer level

Still in Haskell:

• Heaps shaped for PTrees:

data Heap a k = Heap [(k,(a,Maybe k, Maybe k))] k

• Function which represents PTrees in terms of such heaps:

r (Node n b m f) = let x = fmap r m

y = fmap r f

in merge (n,b) x y

• This is a fold over PTrees which builds the heap for a tree by
joining the heaps of the subtrees, where ...
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A glimpse at the heap/pointer level

... merge performs separated union of heaps

merge a Nothing Nothing =

Heap ([ 1 |-> (a, Nothing, Nothing) ]) 1

merge a (Just x) (Just y) =

Heap ([ 1 |-> (a, Just k1, Just k2) ] ++ h1 ++ h2) 1

where (Heap h1 k1) = bmap id even_ x

(Heap h2 k2) = bmap id odd_ y

....

....

even_ k = 2*k

odd_ k = 2*k+1

Note how even and odd ensure that heaps to be joined have
disjoint domains.
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Data “heapification”

Source

t= Node {name = "Peter", birth = 1991,

mother = Just (Node {

name = "Mary", birth = 1956,

mother = Nothing,

father = Just (Node {name = "Jules",

birth = 1917, mother = Nothing,

...... }}}

“heapifies” into:

r t = Heap [(1,(("Peter",1991),Just 2,Just 3)),

(2,(("Mary",1956),Nothing,Just 6)),

(6,(("Jules",1917),Nothing,Nothing)),

(3,(("Joseph",1955),Just 5,Just 7)),

(5,(("Margaret",1923),Nothing,Nothing)),

(7,(("Luigi",1920),Nothing,Nothing))]

1
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What about the way back?

• The way back (abstraction) is a partial unfold

f (Heap h k) = let Just (a,x,y) = lookup k h

in Node (fst a)(snd a)

(fmap (f . Heap h) x)

(fmap (f . Heap h) y)

because of pointer dereferencing is not a total operation.

• More about this in my GTTSE’07 tutorial [5]

• Use of separated union in heap/pointer-level PTree example
suggests separation logic developed by John Reynolds, Peter
O’Hearn and others [7].

• Interest in separation logic spiced up by recent visit of
Shuling Wang, who is working in the field



Motivation Aims PF-transform Separation logic Inference rules Confinement Closing

Aims

We decided to

• Study the application of separation logic to pointer/heap data
refinement [5],

which entailed

• Studying the semantics of separation logic (in particular of
the confined variant proposed by Wang Shuling and Qiu
Zongyan [9])

which entailed

• Applying the PF-transform [5] to confined separation logic



Motivation Aims PF-transform Separation logic Inference rules Confinement Closing

Terminology

Mac Aa dictionary:

• reference — “the action of mentioning or alluding to
something”

• referent — “the thing that a word or phrase denotes or
stands for”

Thus

• references are names and referents are things (aka objects).

Problems:

• aliasing — “Eric Blair, alias George Orwell”: two names for
the same thing

• referential integrity — “Eric Blair : unknown author, sorry”



Motivation Aims PF-transform Separation logic Inference rules Confinement Closing

Name spaces

In a diagram:

Ni
Si /

∈i,j ·Si

��

Fi (Ti ,N1, . . . ,Ni , . . . ,Nni
)

∈i,j

vvmmmmmmmmmmmmmmm

Nj

where

• Si : relation between names and things (of shape “reference
7→ referent”) in name space of type i
(Fi describes the structure of i -things and Ti embodies other
attributes of such things)

• ∈i ,j : relation which spots names of type j in things of type i

• ∈i ,j · Si : name-to-name relation (dependence graph)
between types i and j .
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Name space ubiquity

Name spaces are everywhere:

• Databases (foreign/primary keys, entities)

• Grammars (nonterminals, productions)

• Objects (identities, classes)

• Caches and heaps (memory cells, pointers)

Name spaces in separation logic:

Variables
Store /

Aliases = ∈·Store

�

Atom + Address

∈vmmmmmmmmmmmmm

Address
Heap

/ Atom + Address

that is, a state is a Store (as in Hoare logic) paired with a Heap.
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Separated union

It is a partial operator of type

Heap Heap × Heap
∗o

which joins two heaps

H ∗ (H1,H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (1)

in case they are (domain) disjoint:

H1 ‖ H2
def
= ¬〈∃ b, a, k :: b H1 k ∧ a H2 k〉

NB: t H k means “thing t is the referent of reference k in heap H”
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Let’s spruce up notation

Thanks to the PF (“point free”) transform :-):

¬〈∃ b, a, k :: b H1 k ∧ a H2 k〉

≡ { ∃-nesting (Eindhoven quantifier calculus) }

¬〈∃ b, a :: 〈∃ k :: b H1 k ∧ a H2 k〉〉

≡ { relational converse: b R◦a the same as a R b }

¬〈∃ b, a :: 〈∃ k :: b H1 k ∧ k H◦

2 a〉〉

≡ { introduce relational composition }

¬〈∃ b, a :: b(H1 · H
◦

2 )a〉

≡ { de Morgan ; negation }

〈∀ b, a :: b(H1 · H
◦

2 )a ⇒ False〉



Motivation Aims PF-transform Separation logic Inference rules Confinement Closing

Let’s spruce up notation

Thanks to the PF (“point free”) transform :-):

¬〈∃ b, a, k :: b H1 k ∧ a H2 k〉

≡ { ∃-nesting (Eindhoven quantifier calculus) }

¬〈∃ b, a :: 〈∃ k :: b H1 k ∧ a H2 k〉〉

≡ { relational converse: b R◦a the same as a R b }

¬〈∃ b, a :: 〈∃ k :: b H1 k ∧ k H◦

2 a〉〉

≡ { introduce relational composition }

¬〈∃ b, a :: b(H1 · H
◦

2 )a〉

≡ { de Morgan ; negation }

〈∀ b, a :: b(H1 · H
◦

2 )a ⇒ False〉



Motivation Aims PF-transform Separation logic Inference rules Confinement Closing

Let’s spruce up notation

≡ { empty relation: b ⊥ a is always false }

〈∀ b, a :: b(H1 · H
◦

2 )a ⇒ b ⊥ a〉

≡ { drop points a, b }

H1 · H
◦

2 ⊆ ⊥

So we can redefine

H1 ‖ H2
def
= H1 · H

◦
2 ⊆ ⊥ (2)

cf diagram:

K
H1 / F (A,K )

⊆

K

id

OO

F (A,K )

⊥

OO

H◦

2

o
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Background: PF-transform

φ PF φ

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S

〈∀ a :: a R a〉 id ⊆ R
〈∀ x : : x R b ⇒ x S a〉 b(R \ S)a
〈∀ c : : b R c ⇒ a S c〉 a(S / R)b

b R a ∧ c S a (b, c)〈R ,S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f ◦ · R · g)a

True b ⊤ a
False b ⊥ a

(3)

where R , S , id are binary relations.
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Analogy: Laplace-transform

An integral transform:

(L f )s =
∫
∞

0 e−st f (t)dt

f (t) L(f )

1 1
s

t 1
s2

tn n!
sn+1

eat 1
s−a

etc

A parallel:

〈

∫

x : 0 ≤ x ≤ 10 : x2 − x〉

〈∀ x : 0 ≤ x ≤ 10 : x2 ≥ x〉
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Background: binary relations

Arrow notation

Arrow A
R // B denotes a binary relation to B (target) from A

(source).

Points
b R a — “R relates b to a”, that is, (b, a) ∈ R .

Identity of composition

id such that R · id = id · R = R

Converse
Converse of R — R◦ such that a(R◦)b iff b R a.

Ordering

R ⊆ S — the obvious “R is at most S” inclusion ordering.
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Standard separation logic

Syntax:

p ::= . . .
| emp /* heap is empty */
| e 7→ e /* singleton heap */
| p ∗ p /* separating conjunction */
| p −∗ p /* separating implication */

Semantics:

[[e]] : Store → Atom + Address

[[p]] : (Heap × Store) → IB
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Semantics of separating connectives

Separating conjunction:

[[p ∗ q]](H,S)
def
=

〈∃ H0,H1 :: H ∗ (H0,H1) ∧ [[p]](H0,S) ∧ [[q]](H1,S)〉

Separating implication:

[[p −∗ q]](H,S)
def
=

〈∀ H0 : H0 ‖ H : [[p]](H0,S) ⇒ [[q]](H0 ∪ H,S)〉

Emptyness:

[[emp]](H,S)
def
= H = ⊥

etc.
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Standard inference rules

• Our attention was driven to

[There are] two further rules capturing the
adjunctive relationship between separating
conjunction and separating implication:

p1 ∗ p2 ⇒ p3

p1 ⇒ (p2 −∗ p3)

p1 ⇒ (p2 −∗ p3)

p1 ∗ p2 ⇒ p3

quoted from [7].

• Rules such as these are (in the literature) stated without proof
wrt. the given semantics.
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Checking inference rules

Steps in checking these rules:

• Put them together so as to make Galois connection

apparent:

p ∗ x ⇒ y ≡ x ⇒ ( p −∗ y) (4)

(We like this kind of approach because it reminds us of the
“al-djabr” rules

z − x ≤ y ≡ z ≤ y + x

familiar from school algebra.)

• Define semantics at PF-level so as to take advantage of
relational calculus
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PF-relational semantics for separation logic

We define

• assertion semantics as a relation between stores and heaps,

Heap Store
[[p]]oo

a natural decision since every binary predicate is nothing but a
relation :-)

• the preorder on assertions induced by these semantics

p → q
def
= [[p]] ⊆ [[q]] (5)

so that it can be distinguished from standard logic implication
⇒.
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PF-relational semantics for separation logic

Reynolds original definition of separating conjunction rewrites to

H[[p ∗ q]]S
def
=

〈∃ H0,H1 :: H ∗ (H0,H1) ∧ H0[[p]]S ∧ H1[[q]]S〉

which PF-transforms to

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (6)

just by recalling two rules of the PF-transform (3): composition

b(R · S)c ≡ 〈∃ a :: bRa ∧ aSc〉 (7)

and splitting

(a, b)〈R ,S〉c ≡ a R c ∧ b S c (8)
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Calculation of −∗

Then we re-write (4) into what we should have written in the first
place

(p ∗ x) → y ≡ x → (p −∗ y) (9)

which we regard as an equation where we know everything apart
from −∗ (the unknown, the “cousa”), which we want to calculate:

(p ∗ x) → y

≡ { semantic preorder (5) }

[[p ∗ x ]] ⊆ [[y ]]

≡ { PF-definition (6) }

(∗) · 〈[[p]], [[x ]]〉 ⊆ [[y ]]

≡ { ... }
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Stop and think

GCs are like mushrooms, the stereotype of rapid growth:

• never ignore the ones you know already, eg.

R · X ⊆ S ≡ X ⊆ R \ S (10)

where

b (R \ S) a ≡ 〈∀ c : c R b : c S a〉 (11)

• ... nor the ones you can derive yourself, eg.

〈R ,S〉 ⊆ X ≡ S ⊆ R ⊲ X (12)

where

b(R ⊲ S)a ≡ 〈∀ c : c R a : (c , b) S a〉 (13)

(a “kind of implication”).
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Calculation of −∗ (cntd)

We proceed:

(∗) · 〈[[p]], [[x ]]〉 ⊆ [[y ]]

≡ { the two GCs above in a row }

[[x ]] ⊆ [[p]] ⊲ ((∗) \ [[y ]])

≡ { introduce p −∗ y such that [[p −∗ y ]] = [[p]] ⊲ ((∗) \ [[y ]]) }

[[x ]] ⊆ [[p −∗ y ]]

≡ { semantic preorder (5) }

x → (p −∗ y)

We are left with the meaning of p ⊲ ((∗) \ [[y ]]), see next slides
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Calculation of −∗ (cntd)

H [[p −∗ y ]]S

≡ { above }

H([[p]] ⊲ ((∗) \ [[y ]]))S

≡ { ⊲ pointwise (13) }

〈∀ H0 : H0[[p]]S : (H0, H)((∗) \ [[y ]])S〉

≡ { left division (11) pointwise }

〈∀ H0 : H0[[p]]S : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y ]])S〉〉

≡ { nesting: (4.21) of [1] }
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Calculation of −∗ (cntd)

〈∀ H0,H1 : H0[[p]]S ∧ H1 ∗ (H0,H) : H1[[y ]])S〉

≡ { separated union (1) }

〈∀ H0,H1 : H0[[p]]S ∧ H0 ‖ H ∧ H1 = H0 ∪ H : H1[[y ]])S〉

≡ { one-point: (4.24) of [1] }

〈∀ H0 : H0[[p]]S ∧ H0 ‖ H : (H0 ∪ H)[[y ]])S〉

≡ { trading: (4.28) of [1] }

〈∀ H0 : H0 ‖ H : H0[[p]]S ⇒ (H0 ∪ H)[[y ]])S〉

As expected, we reach the definition postulated by J. Reynolds [7]
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Benefits of ((∗),−∗) connection

The following are immediate consequences of the connection,
where ↔ denotes the antisymmetric closure of →:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (14)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (15)

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (16)

plus monotonicity, cancellations,

x → (p −∗ (p ∗ x)) (17)

p ∗ (p −∗ y) → y (18)

etc. and some others, usually not mentioned in the literature

emp → p −∗ p (19)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (20)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (21)
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Moving on to the main objective

A problem

Aliasing — In object-oriented programming it is difficult
to control the spread and sharing of object references.
This pervasive aliasing makes it nearly impossible to
know accurately who owns a given object, that is to say,
which other objects have references to it. [2]

A proposal

Confinement — An object is said to be confined in a
domain if and only if all references to this object
originate from objects of the domain. [2]

A question

• how do we incorporate confinement into separation logic?
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Enriching separation logic

The essence of separation logic being “separation” itself, Wang
and Qiu [9] propose that the notion of heap disjointness be
sophisticated in three directions:

• notIn variant — heaps disjoint and such that no references of
the first point to the other

• In variant — heaps disjoint and such that all references in the
first do point into the other

• inBoth variant — heaps disjoint and such that all references
in the first are confined to both.
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Confined disjointness — notIn

No outgoing reference in heap H1 goes into separate H2:

H1 ¬⊲ H2
def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥

In a diagram: path

K
H1 / F (A,K )

∈F
{{xxxxxxxx

x

K
H2

/ F (A,K )

is empty, that is (back to points)

¬〈∃ k, k ′ : k ∈ δ H1 ∧ k ′ ∈ δ H2 : k ′ ∈F (H1 k)〉
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Confined disjointness — In

All outgoing references in H1 dangle because they all go into
separate H2:

H1 ⊲ H2
def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 · ⊤

In a diagram: dependency graph ∈F · H1

F (A,K )

∈F

��

K

⊤

��

H1o

K F (A,K )
H◦

2

o

can only lead to references in the domain of H2 ( ⊤ transforms the
everywhere true predicate )
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Confined disjointness — inBoth

H1 and H2 are disjoint and all outgoing references in H1 are
confined to either H2 or itself:

H1 ⊳⊲ H2
def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦ · ⊤
︸ ︷︷ ︸

α

Comments:

• Note how clumsy α becomes once mapped back to
point-level:

〈∀ k : 〈∃ k ′ : k ′ ∈ δ H1 : k ∈F (H1 k ′)〉 : k ∈ δ H1 ∨ k ∈ δ H2〉

• Clearly, in ⇒ inBoth
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Confined separation logic

Three new variants of separating conjunction:

(∗)

into-both conjunction ⊳⊲









¬⊲

2222222

not-into conjunction

into conjunction ⊲

�������

able to express confinement subtleties.



Motivation Aims PF-transform Separation logic Inference rules Confinement Closing

Confined separation logic

• Left-not-into-right conjunction:

[[p ¬⊲ q]]
def
= (∗) · Φ¬⊲ · 〈[[p]], [[q]]〉 (22)

• Left-into-right conjunction:

[[p ⊲ q]]
def
= (∗) · Φ⊲ · 〈[[p]], [[q]]〉 (23)

• Left-into-both conjunction:

[[p ⊳⊲ q]]
def
= (∗) · Φ⊳⊲ · 〈[[p]], [[q]]〉 (24)

NB: relation Φp denotes the PF-transform of unary predicate p,
see next slide
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Background: PF-transforms of unary predicates

• There are several ways to encode unary predicates as binary
relations in the PF-transform.

• A popular one is to use fragments of id (coreflexives) :

R = Φp ≡ (y R x ≡ (p x) ∧ x = y)

eg. (in the natural numbers)

[[1 ≤ x ≤ 4]] =
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What about confined implication(s)?

Very easy:

• Just stick the relevant coreflexive (eg. Φ⊲) to separate union
(∗) and “al-djabr” the lot around as before

• Once points are back into formulæ, you get separate
implication for each case, for instance:

H[[p −⊲ y ]]S
def
=

〈∀ H0 : H0 ⊲ H : H0[[p]]S ⇒ (H0 ∪ H)[[y ]]S〉

together with all the properties intact.
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(∗) and “al-djabr” the lot around as before

• Once points are back into formulæ, you get separate
implication for each case, for instance:

H[[p −⊲ y ]]S
def
=

〈∀ H0 : H0 ⊲ H : H0[[p]]S ⇒ (H0 ∪ H)[[y ]]S〉

together with all the properties intact.
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Confinement extension properties

• Semantics of confinement can be checked against eg. what
happens to standard property

emp ∗ p ↔ p ↔ p ∗ emp

arising from two facts

H[[emp]]S ≡ H = ⊥

H ∗ (H ′,⊥) ≡ H = H ′

• In the confined variants, semantics rules eventually lead us eg.

H[[p]]S ∧ Φα(H,⊥) ≡ H[[p]]S

or

H[[p]]S ∧ Φα(⊥,H) ≡ H[[p]]S

where α ranges over the three given variants.
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Confinement extension properties

• When we check Φα(⊥,H) and Φα(H,⊥) for α := ⊲, for
instance, calculations easily lead to:

emp ⊲ p ↔ p

and

p ⊲ emp ↔ p ⇐ p → emp

recalling

H1 ⊲ H2
def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 · ⊤

• The two other variants trivially preserve the standard rule.
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Discussion

• Is confined separation logic enough for reasoning about
confinement in object-oriented programs? Wang Shuling and
Qiu Zongyan will tell from their experiments [9]

• If not, we anyway have a quite flexible framework for further
extending the logic, if necessary

• Framework which is parametric on the shapes of both heap
and store (this is relevant in OO, because every object is itself
a “little store”, cf. instance variables)

• Each shape has its own membership easy to calculate:
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Background: PF-membership

A very powerful device:

∈K
def
= ⊥ (25)

∈Id
def
= id (26)

∈F×G
def
= (∈F ·π1) ∪ (∈G ·π2) (27)

∈F+G
def
= ∈F (28)

∈F·G
def
= ∈G · ∈F (29)
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PF-model useful in various aspects

Handy way of carrying out semantics-level reasoning, since,
quoting [7]:

”[...] In its present state separation logic is not only
theoretically incomplete but pragmatically incomplete.”

Clearly:

• This gives room for the PF-relational model to be used
explicitly wherever the logic isn’t expressive enough.

• In the PF-style we can calculate directly with semantic
denotations as objects (no quantification over addresses,
atoms, etc)
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PF-model useful in various aspects

Handy characterization of Reynolds [7] classes of assertions, for
instance

• Intuitionistic p : [[p]] = ⊇ · [[p]]. From this

Intuitionistic p ≡ p ∗ true ↔ p (30)

is immediate

• Strictly-exact p : [[p]] is simple, that is [[p]] · [[p]]◦ ⊆ id

• Domain-exact p : δ ≤ [[p]]◦, where ≤ denotes the injectivity
preorder on relations [6].

• Pure p : [[p]] is a right-condition, ie. [[p]] = ⊤ · Φ for some Φ

Example of side-conditioned rule

(p ∧ q) ∗ r ↔ p ∧ (q ∗ r) when p is pure (31)

calculated in the next slide:
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Example of calculation about pure assertions

[[p ∧ (q ∗ r)]]

= { p := ⊤ · Φ since p is pure }

⊤ · Φ ∩ (∗) · 〈[[q]], [[r ]]〉

= { right-conditions (33) }

(∗) · 〈[[q]], [[r ]]〉 · Φ

= { splits (34) }

(∗) · 〈[[q]] · Φ, [[r ]]〉

= { right-conditions (33) }

(∗) · 〈⊤ · Φ ∩ [[q]], [[r ]]〉

= { ⊤ · Φ := p ; definitions }

[[(p ∧ q) ∗ r ]]
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Closing

• More about this work in our paper [8]

• Last but not least — calculation superior to invention +
verification:

(Bear in mind the following was written circa 300 years ago:)

I feel that controversies can never be finished . . . unless
we give up complicated reasonings in favour of simple
calculations, words of vague and uncertain meaning in
favour of fixed symbols . . . every argument is nothing but
an error of calculation. [With symbols] when
controversies arise, there will be no more necessity for
disputation between two philosophers than between two
accountants. Nothing will be needed but that they should
take pen and paper, sit down with their calculators, and
say ‘Let us calculate’.

Gottfried Wilhelm Leibniz (1646-1716), quoted in [3]
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Related work

• “Galculator” project — generic, strategic term rewriting
system (Haskell) which only knows about the algebra of GCs
and indirect equality [10]

• PF-ESC: extended static checking via the PF-transform [4]

• Widen separation logic to name spaces other than those
in“heapification” (future work, actually)
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Related work

• Currently studying the upper adjoint of split in

〈R ,S〉 ⊆ X ≡ S ⊆ R ⊲ X

recall

b(R ⊲ S)a ≡ 〈∀ c : c R a : (c , b) S a〉

in particular instantiated to functions

b(f ⊲ g)a ≡ (f a, b) = g a (32)

satisfying properties such as eg.

b(f ⊲ 〈g , h〉)a ≡ f a = g a ∧ b = h a
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Annex

The proof of (30) stems from fact

(∗) · 〈R ,⊤〉 = ⊇ ·R

The following, taken from [1] and [6],

Φ · R = R ∩ Φ · ⊤ (33)

〈R ,S〉 · Φ = 〈R ,S · Φ〉 ≡ Φ is coreflexive (34)

are also used in the slides.
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