
CoCoViLa -
Compiler-Compiler for Visual Languages

Pavel Grigorenko Mait Harf

Institute of Cybernetics
Tallinn University of Technology

Final Workshop of CDC 2002-2007
22 January 2008

Pavel Grigorenko, Mait Harf (IoC, TUT) CoCoViLa Final Workshop of CDC 1 / 15

Introduction

CoCoViLa1 is a visual programming framework for rapid design and
implementation of domain specific visual languages.

It is being developed in Software Department of Institute of Cybernetics
since 2003.

Implemented techniques (visual programming, automatic program synthesis)
have previously been used in NUT, Priz, etc.

CoCoViLa is Open Source, Java based, platform independent and extendable
system that is able to perform large-scale simulation tasks.

1http://cs.ioc.ee/~cocovila
Pavel Grigorenko, Mait Harf (IoC, TUT) CoCoViLa Final Workshop of CDC 2 / 15

http://cs.ioc.ee/~cocovila

Introduction

A. Saabas “A Framework for Design and Implementation of Visual
Languages” (master thesis) – 2004

P. Grigorenko “Program Synthesis in Java Environment” (bachelor thesis)
– 2004

P. Grigorenko “Attribute Semantics of Visual Languages” (master thesis)
– 2006

Andres Ojamaa “Modulaarne simuleerimisplatvorm” (master thesis) –
2007

Riina Maigre “Visuaalse kasutaja-liidesega veebiteenuste tarkvara”
(master thesis) – 2007

Supervisor: Enn Tyugu

Pavel Grigorenko, Mait Harf (IoC, TUT) CoCoViLa Final Workshop of CDC 3 / 15

Outline

1 Programming Technology

2 Components
Metaclasses and Metainterfaces
Visual Classes and Schemes
Specification Language
Automatic Program Synthesis

3 Runnables
Class Editor
Scheme Editor

Pavel Grigorenko, Mait Harf (IoC, TUT) CoCoViLa Final Workshop of CDC 4 / 15

Programming Technology

Pavel Grigorenko, Mait Harf (IoC, TUT) CoCoViLa Final Workshop of CDC 5 / 15

Metaclasses and Metainterfaces

Metaclass is a Java class supplied with metainterface

Metainterface is a specification of an object representing its usability as a
component in terms of a problem domain

public class Resistor {
/*@ specification Resistor {
double r, u, i;
u = r*i;

} @*/
...

}

Pavel Grigorenko, Mait Harf (IoC, TUT) CoCoViLa Final Workshop of CDC 6 / 15

Visual Classes and Schemes

Metaclasses have visual representations – visual classes.
Visual class contains:

Icon (Toolbar)
Image (Scheme)

Visual classes can be connected using ports.
Schemes are visual specifications of problems to solve.

Pavel Grigorenko, Mait Harf (IoC, TUT) CoCoViLa Final Workshop of CDC 7 / 15

Specification Language

Variable declarations
<type> <identifier>

Bindings
<var> = <var>

Valuations
<var> = <constant>

Inheritance
super <name>

Axioms
precondition -> postcondition{impl}

Equations
<exp> = <exp>

Aliases
alias [<type>] <name> = (<var>, <var>,...)

Pavel Grigorenko, Mait Harf (IoC, TUT) CoCoViLa Final Workshop of CDC 8 / 15

Example

class Factorial {
/*@ specification Factorial {
double n, f, arg, val;
n = 10;
[arg -> val], n -> f, (java.lang.Exception) { fact };
val = arg - 1;
n -> f;

} @*/

double fact(Subtask s, double n) throws Exception {
if(n == 0) return 1;
Object[] in = new Object[]{ n };
Object[] out = s.run(in);
return n * fact(s, ((Double)out[0]).doubleValue());

}
}

Pavel Grigorenko, Mait Harf (IoC, TUT) CoCoViLa Final Workshop of CDC 9 / 15

Automatic Program Synthesis

Automatic synthesis of programs is a technique for the automatic construction
of programs from the knowledge available in specifications of classes. Having
a specification of a class, we are, in general, interested in solving the following
problem: find an algorithm for computing the values of components y1, ...,yn

from the values of components x1, ...,xm. The automatic synthesis of programs
is based on Structural Synthesis of Programs (SSP).
Specification

Description of problem area (model, scheme, specification)

Known values x1, ...,xm (constants, initial values of components)

Unknown values y1, ...,yn (components to be computed)

Computational tasks

Compute required values of components

Compute all the values of components that is possible to compute

Pavel Grigorenko, Mait Harf (IoC, TUT) CoCoViLa Final Workshop of CDC 10 / 15

CoCoViLa Runnables

The Class Editor is used for developing visual languages for different
problem domains. This is done by defining metainterfaces of language
components as well as their visual and interactive aspects.

The Scheme Editor is a tool for creating schemes, compiling and running
programs defined by a scheme and a goal. Algorithms of automatic
program synthesis are embedded into the Scheme Editor and are not
visible to the user.

Pavel Grigorenko, Mait Harf (IoC, TUT) CoCoViLa Final Workshop of CDC 11 / 15

Class Editor

Pavel Grigorenko, Mait Harf (IoC, TUT) CoCoViLa Final Workshop of CDC 12 / 15

CoCoViLa Runnables

The Class Editor is used for developing visual languages for different
problem domains. This is done by defining metainterfaces of language
components as well as their visual and interactive aspects.

The Scheme Editor is a tool for creating schemes, compiling and running
programs defined by a scheme and a goal. Algorithms of automatic
program synthesis are embedded into the Scheme Editor and are not
visible to the user.

Pavel Grigorenko, Mait Harf (IoC, TUT) CoCoViLa Final Workshop of CDC 13 / 15

Scheme Editor

Pavel Grigorenko, Mait Harf (IoC, TUT) CoCoViLa Final Workshop of CDC 14 / 15

Scheme Editor

Pavel Grigorenko, Mait Harf (IoC, TUT) CoCoViLa Final Workshop of CDC 15 / 15

	Introduction
	Programming Technology
	Components
	Metaclasses and Metainterfaces
	Visual Classes and Schemes
	Specification Language
	Automatic Program Synthesis

	Runnables
	Class Editor
	Scheme Editor

