
Sparse Bidirectional Data Flow Analysis as a

Basis for Type Inference

Jeremy Singer∗

February 13, 2004

Abstract

Type inference can be expressed as a bidirectional data flow problem.
In this paper we show how to perform type inference using sparse data
flow analysis on the static single information form. We infer types for two
example programs from previous work, to show that our sparse technique
is as effective as, and more efficient than, classical data flow analysis.

1 Introduction

Data flow analysis is the traditional form of program analysis [ASU86]. It is a
compile time technique that predicts a safe approximation of program behaviour
at run time. Program behaviour is specified in terms of data flow information at
program points. A system of simultaneous data flow equations is derived from
the program. These equations are solved, generally by an iterative fixed point
calculation.

A program is represented as a control flow graph. In this paper we restrict
attention to intraprocedural data flow analysis. The scope of data flow analy-
sis is a single procedure, hence program/procedure are interchangeable terms.
Nodes in the control flow graph represent basic blocks of consecutive instruc-
tions. There is an edge (n1, n2) from node n1 to node n2 if the flow of execution
may proceed directly from n1 to n2. There is a unique node Entry which has
no predecessors, and a unique node Exit which has no successors.

Each data flow analysis has an associated direction. A data flow analysis is
said to be forwards if the data flow information at each node depends on the
data flow information at that node’s predecessors. Forwards data flow analysis
propagates information in the same direction as the flow of control. Reaching
definitions and available expressions are both forwards analyses. A data flow
analysis is said to be backwards if the data flow information at each node de-
pends on the data flow information at that node’s successors. Backwards data
flow analysis propagates information in the opposite direction from the flow of

∗University of Cambridge Computer Lab, UK, jeremy.singer@cl.cam.ac.uk

control. Live variables and very busy expressions are both backwards analyses.
A data flow analysis is said to be bidirectional if the data flow information at
each node depends on the data flow information at that node’s predecessors and
successors. Bidirectional data flow analysis propagates information both with
and against the flow of control.

Partial redundancy elimination (PRE) was originally formulated as a bidi-
rectional data flow problem [MR79]. PRE attempts to remove equivalent com-
putations that occur more than once along a path in the control flow graph.
PRE has since been decomposed to a fixed sequence of forwards and backwards
(unidirectional) data flow problems [DRZ92, KRS94]. Type inference can be
expressed as a data flow analysis [KDM03]. Unlike PRE, type inference can-
not be decomposed into a fixed sequence of unidirectional flows, it is a genuine
bidirectional data flow problem [KD99].

Classical data flow analysis stores many units of data flow information at
each node in the control flow graph. The major feature of sparse data flow
analysis is that it stores less data flow information at fewer program points. In
this paper, we show how bidirectional data flow problems (exemplified by type
inference) can be solved by means of sparse data flow analysis using the static
single information form (SSI). The rest of this paper is structured as follows:
in section 2 we describe in detail the problem of type inference as a data flow
analysis; in section 3 we review SSI and give its formal definition; in section
4 we survey the field of sparse data flow analysis; in section 5 we highlight
our contribution, which is applying sparse data flow analysis to bidirectional
problems; in sections 6 and 7 we work through two examples of type inference
using our sparse technique; we review related work in section 8; finally we make
some concluding remarks in section 9.

2 Type Inference

Type inference [Car97] is the process of discovering the derivation of types for
terms in a program, within a given type system. Type inference determines the
type of a term from the contexts in which it is mentioned in the program. It
is also known as type reconstruction. The standard type inference algorithm
[Mil78] generates constraints on types which must be solved by unification.

However type inference can also be implemented as data flow analysis. Aho
et al [ASU86] treat type inference as a bidirectional data flow problem. They
explicitly state that it requires both forwards and backwards propagation of
information to obtain precise estimates of possible types. We consider one of
their examples in section 6. Aho et al’s treatment of the subject is based on
the work on Tennenbaum [Ten74] for the SETL programming language. Kaplan
and Ullman [KU80] present another early example of type inference using data
flow analysis. The most authoritative recent work on the subject is by Khedker
et al [KDM03]. We consider one of their examples in section 7. They define
the first ever formal data flow framework for type inference, based on bidirec-
tional data flow analysis. They distinguish between statically typed languages,

which require a variable to have the same type throughout the program, and
dynamically typed languages, which allow the same variable to hold values of
different types in different parts of the program. Mycroft [Myc99] has shown,
in the context of decompilation, that dynamic types can often be reduced to
static types by transforming to static single assignment form (SSA). Our type
inference works on SSI, thus we reap the same benefits as Mycroft—dynamic
types are reduced to static types in SSI. Indeed, it appears that a larger class of
dynamically typed programs are reducible to statically typed programs by SSI
transformation than by SSA transformation.

All of these type inference algorithms which are based on data flow analysis
are implemented in the classical, non-sparse manner. This paper shows how
type inference can be performed using a sparse data flow analysis technique.

3 Static Single Information Form

Static single information form (SSI) is an extension of the well known static
single assignment form (SSA) [CFR+91]. The beauty of SSA is that program
variables are renamed such that each variable has only one definition site in
the program. The most notable feature of SSA is the φ-function, a pseudo-
assignment which is used to combine multiple incoming variable definitions at
control flow merge points, thus (albeit rather artificially) preserving the property
that each variable has a unique definition site.

SSI builds upon SSA by adding another pseudo-assignment, the σ-function,
which is used to separate variables at control flow split points. In this way
it is possible to differentiate between uses of a variable in separate arms of
a conditional branch. SSI was originally described by Ananian [Ana99]. He
states that “the principal benefits of using SSI form are the ability to do pred-
icated and backwards dataflow analyses efficiently.” He gives several exam-
ples including very busy expressions analysis and sparse predicated typed con-
stant propagation. Indeed, SSI has been applied to a wide range of problems
[RR00, GSR03, AR03]. However to the best of our knowledge, SSI has never
previously been applied to a bidirectional data flow problem. In this paper we
show that bidirectional data flow analysis can be performed with great efficiency
when combined with SSI.

Figure 1(a) shows an example program in standard control flow graph no-
tation. In the SSA notation of figure 1(b), variables are renamed so that each
variable has a unique definition site, but the semantics of the program are un-
changed. Note that the φ-function for b2 is needed to merge the definitions of b0
and b1 in the two arms of the conditional branch. In the SSI notation of figure
1(c), variables are renamed so that each variable has a unique definition site,
and that each variable is only mentioned in at most one arm of a multi-way
branch. Note that the σ-function for a1 and a2 is needed to split a0 across
the conditional branch. In general σ-functions may have to be inserted for any
variable, not necessarily the variable mentioned in the conditional branch test
as is the case here.

a ≥ 0

b← 1− a b← 1 + a

c← 2 ∗ b

¡
¡ª

@
@R

@
@R

¡
¡ª

false true

(a) Control flow graph

a0 ≥ 0

b0 ← 1− a0 b1 ← 1 + a0

b2 ← φ(b0, b1)

c0 ← 2 ∗ b2

¡
¡ª

@
@R

@
@R

¡
¡ª

false true

(b) SSA

a0 ≥ 0

a1, a2 ← σ(a0)

b0 ← 1− a1 b1 ← 1 + a2

b2 ← φ(b0, b1)

c0 ← 2 ∗ b2

¡
¡ª

@
@R

@
@R

¡
¡ª

false true

(c) SSI

Figure 1: One program, three representations

In order to define SSI formally, some auxiliary definitions are required. Node
n1 dominates n2 if every path in the control flow graph from Entry to n2 passes
through n1. Node n1 postdominates n2 if every path in the control flow graph
from n2 to Exit passes through n1. The dominance frontier of a node x is
the set of all nodes ni such that x dominates a predecessor of ni but does not
dominate ni. The reverse dominance frontier of a node x is the set of all nodes
ni such that x postdominates a successor of ni but does not postdominate ni.
The property of SSI may now be stated as follows:

1. Each variable has a unique definition point in the program text;

2. Every definition of variable v dominates all non-φ-function uses of v and
all φ-function uses of v are on the dominance frontier of that definition;

3. Every use of variable v postdominates all non-σ-function reaching defini-
tions of v and all σ-function definitions of v are on the reverse dominance
frontier of that use.

Ananian [Ana99] gives an alternative (more verbose) definition of SSI. Con-
struction of SSI can be performed in O(EV) time, where E is the number of
edges in the control flow graph and V is the number of variables in the original
program (before SSI renaming). This is worst case complexity—typical time
complexity is linear in the program size.

4 Sparse Data Flow Analysis

The goal of sparse data flow analysis is to avoid storing and propagating ir-
relevant data flow information. Because of this, sparse data flow analysis has
the potential to be more efficient and more effective than classical data flow

analysis. Admittedly this is a rather imprecise definition, but there is no clearer
consensus on the meaning of sparseness in this context.

General sparse representations completely describe a program’s behaviour,
that is, it is possible to reconstruct the entire original control flow graph for
the program. On the other hand, analysis-specific sparse representations only
retain those program statements needed to solve a particular data flow problem
[Ruf95]. SSA [CFR+91] and SSI [Ana99] are examples of general sparse repre-
sentations. The sparse evaluation graph [CCF91, Ram97] is an example of an
analysis-specific sparse representation.

In this paper, we devote our attention to general sparse representations. We
assume the following model of data flow analysis. There is a vector E, in which
units of data flow information (generally elements of some data flow lattice)
are stored. Classical data flow analysis associates a distinct unit of data flow
information with each variable1 at each node in the control flow graph. Eclassical

is a two-dimensional vector indexed by 〈variable,node〉 pairs. Many entries in
Eclassical will not contain relevant data flow information. It is a waste of space
to store such entries, and it is a waste of time to calculate them. In contrast,
sparse data flow analysis associates a distinct unit of data flow information
only with each variable. Thus sparse data flow information must hold over the
entire program. This is referred to as control flow insensitive analysis [MRB95].
Esparse is a one-dimensional vector indexed by 〈variable〉. This reduces data
flow analysis costs, in terms of both computational time and space. In order
to increase the precision of sparse analysis, extra variables are introduced by
renaming variables from the original program using a scheme such as SSI. The
hope is that Esparse remains smaller than Eclassical, even after the increase of
variable names. Constant propagation [WZ91] is a popular data flow analysis
that fits this sparse model.

5 Our Contribution

Our contribution is to demonstrate that SSI can be used for sparse bidirectional
data flow analysis. We apply SSI to the problem of type inference, simply
because this is the most outstanding bidirectional problem that cannot be de-
composed into unidirectional data flow. However it should be possible to devise
a sparse data flow analysis using SSI for any bidirectional problem.

SSA enables sparse forwards data flow analysis, such as reaching definitions
and constant propagation [WZ91]. However it is well known that SSA cannot
support sparse backwards data flow analysis, such as live variables [CCF91]. SSI
enables both forwards and backwards sparse analysis [Ana99, Sin03]. However
only φ-functions are required for forwards analysis, and only σ-functions are
required for backwards analysis. In this paper we argue that both φ- and σ-
functions are essential in bidirectional analysis.

1This can be generalised to something other than variables, such as expressions. We only
consider relating data flow information to variables in order to keep the presentation simple.

We compare classical and sparse bidirectional data flow analysis for both
statically typed programs (section 6) and dynamically typed programs (section
7). In both cases our sparse analysis is as precise and more efficient than previous
classical analysis.

6 Simple Example

The simple program given below is taken from Aho et al [ASU86], example 10.50
in their book. This straightline program already satisfies the SSI property, so it
does not need to be transformed at all. The array indexing operator is denoted
by [] which requires an integer argument. The assignment operator is denoted
by :=.

i := a[j]

k := a[i]

We adopt the following type algebra, where int is the integer type and ptr
is the pointer type:

t ::= int | ptr(t)

It is impossible to infer the correct types by reasoning only forwards or only
backwards. We do sparse data flow analysis on this example, in the style of
sparse constant propagation [WZ91]. Our data flow lattice 2 is:

>

©©
©

PP
PP

int ptr(int) . . . ptr(ptr(. . .))
HHH

³³³³
⊥

This lattice has the same shape as the constant propagation lattice, in that it
is only three levels deep, but infinitely wide. The maximal element > represents
“type not yet inferred” and the minimal element ⊥ represents “overdefined
type”. The lattice meet operator u is defined as follows:

> u x = x

x u > = x

x u x = x

x u ⊥ = ⊥
⊥ u x = ⊥
x u y = ⊥ (x 6= >, y 6= >, x 6= y)

2We adopt the classical data flow convention for lattices, which is rather at odds with a
semantic view of the world.

complete iterations 〈Ei, Ej , Ek, Ea〉
0 〈>,>,>,>〉
1 〈int , int ,>,>〉
2 〈int , int , int , ptr(int)〉
3 〈int , int , int , ptr(int)〉

Figure 2: Trace of state of E after each sparse analysis iteration

Auxiliary functions are required to handle pointer referencing (ptr+) and
dereferencing (ptr−):

ptr+(>) = >
ptr+(⊥) = ⊥
ptr+(t) = ptr(t)

ptr−(>) = >
ptr−(⊥) = ⊥

ptr−(int) = ⊥
ptr−(ptr(t)) = t

One type inference rule is needed for each kind of statement:

(array deref) x := y[z] Ez := Ez u int
Ey := Ey u ptr+(Ex)
Ex := Ex u ptr−(Ey)

(var assign) x := y Ex := Ex u Ey
Ey := Ex u Ey

A single global vector E of data flow information is maintained. (This is
the characteristic feature of sparse data flow analysis.) Ev represents the lattice
element associated with variable v. Initially, all entries in E are set to >. A
single iteration of the data flow analysis processes the program statement-by-
statement and applies the appropriate inference rules. E is updated as specified
by the inference rules. This iterative pass is repeated until a fixed point is
reached, that is, E does not change any more.

We implemented this analysis in ML. E was four elements in size: 〈E i, Ej , Ek, Ea〉.
The fixed point was detected after three passes through the program. Figure 2
shows an execution trace of our analysis. This is an improvement over the ap-
proach given in [ASU86]. Their data flow analysis takes a forwards pass through
the whole program, then a backwards pass, then another forwards pass, then
another backwards pass which happens to detect the fixed point. They store
two lattice values for each variable—one lattice value per variable per statement.
So our sparse approach saves both computational space and time. (Extra space
also requires extra time to manage and update.)

7 Complicated Example

In this section we apply our sparse data flow analysis to type inference for
languages with dynamic type constraints. The example program shown in figure
3 is taken from figure 6 in [KDM03]. Our version of this program has been
transformed into SSI. The original version can be recovered simply by eliding φ-
and σ-functions and numerical variable subscripts. The only statements which
are relevant to type inference for variable a are “use” statements and φ- and
σ-functions. No other program statements are shown in figure 3, for the sake of
simplicity.

Khedker et al qualify type information with a degree of certainty and with
its origin. In this analysis we only qualify type information with its origin, in
order to simplify the presentation. We achieve the same results as [KDM03]
on this example. It should be straightforward to extend our analysis to handle
degrees of certainty.

A control flow ancestor of node n is a node a that is passed through on at
least one path from Entry to n. A control flow descendant of node n is a node
d that is passed through on at least one path from n to Exit.

It is necessary to remember the origin of type information, since the type in-
formation propagated to a node from one point in the program may conflict with
the type information propagated from another point. Type information gener-
ated at the current node is the most reliable. If this is not available then type
information from ancestors should take precedence over type information from
descendants because at run time, control flows from ancestors to descendants.
Type information propagated from descendants should only be used where use-
ful information is not available from ancestors. Type information propagated
from a node other than an ancestor or a descendant should only be used as a
last resort. The Γ operator below selects the most appropriate source of type
information available.

The types used in this type system are integer i, real r and string s. We define
T to be the set of all types {i, r, s}. Our component data flow lattice L̂ is the

power set of T . The maximal element >̂ is the empty set. The minimal element
⊥̂ is the set T . The partial order v̂ is the standard set inclusion operator ⊇.
The meet operator û on lattice elements is the standard set union operator ∪.

Now we define the compound lattice L. Each compound lattice element X
has four component elements 〈Xc, Xa, Xd, Xo〉, each of which is a member of L̂.

Xc represents type information generated at current nodes, that is, at “use”
statements. Xa represents type information generated at ancestor nodes, that is,
propagated forwards through φ- and/or σ-functions. Xd represents type infor-
mation generated at descendant nodes, that is, propagated backwards through
φ- and/or σ-functions. Xo represents type information generated at some other
node, that is, indirectly in terms of control flow.

The maximal element> is 〈>̂, >̂, >̂, >̂〉. The minimal element⊥ is 〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉.
The partial order v is defined as:

X v Y = (Xcv̂Yc) ∧ (Xav̂Ya) ∧ (Xdv̂Yd) ∧ (Xov̂Yo)

read a0
a1, a2 = σ(a0)

use a1 as int

print a1

a5 = φ(a1,a3)
use a5 as string

print a5

a6 = φ(a5,a4)
use a6 as real

print a6

print a4

print a2
a3, a4 = σ(a2)

#1

#2

#3

#4

#5

#6 #7

#8

#9

Figure 3: Example program from [KDM03]

The meet operator u is defined as:

X u Y = 〈XcûYc, XaûYa, XdûYd, XoûYo〉
It is necessary to define specialised meet operators ua and ud, which are

used to ensure that type information flows to the correct components of the
compound lattice elements. These correspond to the forwards (ua) and back-
wards (ud) edge flow functions of [KDM03].

X ua Y = 〈Xc, Xaû(YcûYa), Xd, Xoû(YdûYo)〉

X ud Y = 〈Xc, Xa, Xdû(YcûYd), Xoû(YaûYo)〉
The Γ operator below selects a precise estimate of the type from a compound

lattice element X by giving precedence to information generated at the current
node, then preferring ancestors over descendants.

Γ(X) =

Xc, Xc 6= >̂
Xa, Xc = >̂ ∧Xa 6= >̂
Xd, Xc = >̂ ∧Xa = >̂ ∧Xd 6= >̂
Xo in all other cases

E represents the single global vector of data flow information that char-
acterises sparse data flow analysis. E is indexed by SSI variable names. Ev

represents the compound lattice element associated with variable v.
The actual inference rules for this type system are given below:

(use) use x as t Exc := Exc û{t}

(sigma) x1, x2 ← σ(x0) Ex0 := Ex0 ud (Ex1 u Ex2)
Ex1 := Ex1 ua Ex0

Ex2 := Ex2 ua Ex0

(phi) x0 ← φ(x1, x2) Ex0 := Ex0 ua (Ex1 u Ex2)
Ex1 := Ex1 ud Ex0

Ex2 := Ex2 ud Ex0

Initially each element of E is set to >. A single iteration of the data flow
analysis processes the program statement-by-statement and applies the appro-
priate inference rules. The vector E is updated as specified by the inference
rules. This iterative pass is repeated until a fixed point is reached, that is to
say, E does not change at all after an entire iterative pass. (The order in which
the statements are processed in the iterative pass is irrelevant to the final state
of E, although it may have some effect on the number of iterations required to
reach a fixed point.)

We have implemented this type inference algorithm in ML using the sparse
data flow analysis framework given above. We achieve the same precision of
results as [KDM03], using a single lattice element for each variable, and in six
passes through the program. In summary, our results are:

variable v a0 a1 a2 a3 a4 a5 a6

Γ(Ev) {i, s, r} {i} {s, r} {s, r} {r} {s} {r}

8 Related Work

The previous work on type inference as bidirectional data flow analysis has been
mentioned already in section 2. This previous work [Ten74, KU80, ASU86,
KDM03] uses classical, non-sparse data flow analysis. In this paper we have
applied sparse data flow analysis to the same problems. Our results are as
precise and our analysis is more efficient.

A restricted form of type inference is used for object-oriented languages in
order to compute sets of possible concrete classes for variables. This type infor-
mation enables the replacement of virtual method calls by direct calls, and the
elimination of runtime type checks. Chambers et al [CDG96] describe intrapro-
cedural class analysis, which is a standard forwards data flow analysis. Diwan
et al [DMM01] describe intraprocedural type propagation, which is similar to
reaching definitions analysis. Bidirectional data flow analysis is not necessary
to solve the problem of concrete type inference in object-oriented languages.

Although bidirectional type inference has not previously been done using
sparse data flow analysis, there has been some work on solving other bidirec-
tional problems using sparse techniques. Dhamdhere et al [DRZ92] show how to
perform partial redundancy elimination using sparse data flow analysis. How-
ever they reduce the bidirectional analysis to a simpler unidirectional analysis.
Kennedy et al [KCL+99] present the SSAPRE algorithm for partial redundancy
elimination on SSA. They do a series of forwards and backwards data flow anal-
ysis passes on the factored redundancy graph, which is derived from SSA.

There has been little previous work on type inference for SSA-like interme-
diate representations. Mycroft [Myc99] shows how to perform type inference on
register transfer language (RTL) code in SSA. However he uses constraint-based
type inference. It would be interesting to translate Mycroft’s system into our
sparse data flow analysis framework.

9 Concluding Remarks

A key observation made by Khedker et al [KDM03] is that

“Data flow analysis refers to forms of program analysis with no aux-
iliary store; each node in the program has an attribute. The space
required by these attributes is usually tightly bounded by the pro-
gram whereas the auxiliary store in constraint-based analyses is not
tightly bounded.”

The sparse data flow analysis presented in this paper also requires no auxiliary
store. Each SSI variable in the program (rather than each node) has an at-
tribute. The space required by these attributes is generally smaller for sparse

data flow analysis, since it is only necessary to store a single lattice element for
each variable, rather than one lattice element per variable at each node.

Data flow information is never killed in sparse data flow analysis, unlike
classical data flow analysis. Sparse data flow information has to hold for the
entire program, so information must only be generated if it holds globally, rather
than just locally. Classically, data flow information is killed when it is true for
some part of the program, but not another part. These local, control flow
sensitive effects cannot be modelled by sparse data flow analysis. However they
do not need to be, since SSI variable renaming effectively factors control flow
sensitivity into the variable naming scheme [HH98].

Nielson et al [NNH99] state that there is a very strong connection between
the data flow equational approach and the constraint-based approach to program
analysis. It would be interesting to make a proper comparison of our sparse
data flow analysis technique for type inference with traditional constraint-based
analysis.

Plans for future work include the development of a real-world implementa-
tion of this type inference mechanism. At the moment, we have merely produced
simple ML proof-of-concept implementations. As mentioned in section 8, we
hope to construct a Mycroft-style type inference system for RTL code [Myc99].

To conclude, in this paper we have shown that SSI can be used to perform
sparse bidirectional data flow analysis. SSA only supports sparse forwards data
flow analysis. The extra analysis potential of SSI is required to handle bidirec-
tional information flow.

References

[Ana99] C. Scott Ananian. The static single information form. Master’s
thesis, Massachusetts Institute of Technology, Sep 1999.

[AR03] C. Scott Ananian and Martin Rinard. Data size optimizations for
Java programs. In Proceedings of the 2003 ACM SIGPLAN Con-
ference on Languages, Compilers and Tools for Embedded Systems,
pages 59–68, 2003.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques and Tools. Addison Wesley, 1986.

[Car97] Luca Cardelli. Type Systems, chapter 103, pages 2208–2236. CRC
Press, 1997.

[CCF91] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic con-
struction of sparse data flow evaluation graphs. In Proceedings of
the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 55–66, 1991.

[CDG96] Craig Chambers, Jeffrey Dean, and David Grove. Whole-program
optimization of object-oriented languages. Technical Report 96-06-

02, Department of Computer Science and Engineering, University of
Washington, Jun 1996.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman,
and F. Kenneth Zadeck. Efficiently computing static single assign-
ment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451–490, Oct 1991.

[DMM01] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Us-
ing types to analyze and optimize object-oriented programs. ACM
Transactions on Programming Languages and Systems, 23(1):30–72,
Jan 2001.

[DRZ92] Dhananjay M. Dhamdhere, Barry K. Rosen, and F. Kenneth Zadeck.
How to analyze large programs efficiently and informatively. In Pro-
ceedings of the ACM SIGPLAN 1992 Conference on Programming
Language Design and Implementation, pages 212–223, 1992.

[GSR03] Ovidiu Gheorghioiu, Alexandru Salcianu, and Martin Rinard. In-
terprocedural compatibility analysis for static object preallocation.
In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium of
Principles of Programming Languages, pages 273–284, 2003.

[HH98] Rebecca Hasti and Susan Horwitz. Using static single assignment
form to improve flow-insensitive pointer analysis. In Proceedings of
the ACM SIGPLAN 1998 Conference on Programming Language De-
sign and Implementation, pages 97–105, 1998.

[KCL+99] Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu,
and Fred Chow. Partial redundancy elimination in SSA form. ACM
Transactions on Programming Languages and Systems, 21(3):627–
676, May 1999.

[KD99] Uday P. Khedker and Dhananjay M. Dhamdhere. Bidirectional data
flow analysis: myths and reality. SIGPLAN Notices, 34(6):47–57,
1999.

[KDM03] Uday P. Khedker, Dhananjay M. Dhamdhere, and Alan Mycroft.
Bidirectional data flow analysis for type inferencing. Computer Lan-
guages, Systems and Structures, 29(1–2):15–44, 2003.

[KRS94] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Optimal code
motion: theory and practice. ACM Transactions on Programming
Languages and Systems, 16(4):1117–1155, Jul 1994.

[KU80] Marc A. Kaplan and Jeffrey D. Ullman. A scheme for the automatic
inference of variable types. Journal of the ACM, 27(1):128–145, Jan
1980.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Jour-
nal of Computer and System Sciences, 17(3):348–375, Dec 1978.

[MR79] E. Morel and C. Renvoise. Global optimization by suppression of
partial redundancies. Communications of the ACM, 22(2):96–103,
Feb 1979.

[MRB95] T. J. Marlowe, B. G. Ryder, and M. Burke. Defining flow sensitivity
for data flow problems. Technical Report LCSR-TR-249, Laboratory
of Computer Science, Rutgers University, Jul 1995.

[Myc99] Alan Mycroft. Type-based decompilation. In Proceedings of the
European Symposium on Programming, volume 1576 of Lecture Notes
in Computer Science, pages 208–223. Springer-Verlag, 1999.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles
of Program Analysis. Springer-Verlag, 1999.

[Ram97] G. Ramalingam. On sparse evaluation representations. In Proceed-
ings of the 4th International Symposium on Static Analysis, volume
1302 of Lecture Notes in Computer Science. Springer-Verlag, 1997.

[RR00] Radu Rugina and Martin Rinard. Symbolic bounds analysis of point-
ers, array indices and accessed memory regions. In Proceedings of the
ACM SIGPLAN 2000 Conference on Programming Language Design
and Implementation, pages 182–195, 2000.

[Ruf95] Erik Ruf. Optimizing sparse representations for dataflow analysis.
ACM SIGPLAN Notices, 30(3):50–61, Mar 1995.

[Sin03] Jeremy Singer. SSI extends SSA. In Work in Progress Session Pro-
ceedings of the Twelth International Conference on Parallel Archi-
tectures and Compilation Techniques, Sep 2003.

[Ten74] A. Tennenbaum. Type determination for very high level languages.
PhD thesis, Courant Institute, New York University, Oct 1974. As
cited by [ASU86].

[WZ91] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation
with conditional branches. ACM Transactions on Programming Lan-
guages and Systems, 13(2):181–210, Apr 1991.

