
When Separation Logic met Java
(Work in progress)

Matthew Parkinson

University of Cambridge, Computer Laboratory, Cambridge, CB3 0FD, UK

Matthew.Parkinson@cl.cam.ac.uk

Developing a logic for object-oriented programs is complicated by
both encapsulation and inheritance. Encapsulation requires a logic
that abstracts the actual representation, and inheritance requires a
notion of “behaves the same.” While contending with these two
beasts one must remember that aliasing is just around the corner
ready to change our perception of the entire world. Fortunately
separation logic [3] saves us from the problems of aliasing, so we
are just left with two beasts to slay. In this abstract we propose an
extension to separation logic that facilitates reasoning about both
inheritance and encapsulation.

Let us consider a naı̈ve approach with a simple example. In the
end this will not succeed, but the reason should be instructive. Take
a (separation) logic with predicates of the form x.f 7→ v, which
means the field f in the object x has the value v. These can be
combined using the connectives of classical logic and the separating
conjuction, ∗. We use P ∗ Q to mean both P and Q are true in
disjoint parts of the heap.

The standard subtyping example of Cell/Recell [1] would be written

class Cell {
Object contents;

/*@ pre: this.contents |-> _ /\ newValue != null@*/
void set(Object newValue) {...}
/*@ post: this.contents |-> newValue /\ newValue != null@*/

}

class Recell extends Cell {
Object backup;

/*@ pre: (this.contents |-> X /\ newValue != null)
* (this.backup |-> _ /\ X != null) @*/

void set(Object newValue) {...}
/*@ post: (this.contents |-> newValue /\ newValue != null)

* (this.backup |-> X /\ X != null) @*/
}

To allow for dynamic dispatch the Recell’s specification needs to
be compatible with the Cell’s. Compatibility is captured by the
following two implications.1

precond(Cell, set) ∧ this : Recell⇒ precond(Recell, set) (1)
postcond(Recell, set)⇒ postcond(Cell, set) (2)

where precond(C,m) denotes the precondition for the method m
in class C, and postcond denotes the postcondition. We use the
predicate this : Recell to mean that this points to an object of
type Recell.

In separation logic these implications can never hold as they require
a one element heap to be the same size as a two element heap. A
greater level of abstraction is needed to allow changes to the im-
plementation. To achieve this we propose the notion of an abstract

1(1) is weaker than the usual constraint as it includes this :
Recell, but it is sound with respect to the semantics of dynamic
dispatch.

Open
Ξ

�
PredC(X;~v) ∧X : C ⇒ ψ(X;~v)

where Ξ(PredC) = (n, ψ) and ` Ξ ok

Close
Ξ

�
ψ(X;~v) ∧X : C ⇒ PredC(X;~v)

where Ξ(PredC) = (n, ψ) and ` Ξ ok

Upcast
Ξ

�
PredD(X;~v, ~v′)⇒ PredC(X;~v)

where ` Ξ ok, D ≺ C, Ξ(PredC) = (n, ψ) and | ~v |= n

Downcast
Ξ

�
PredC(X;~v) ∧X : E ⇒ ∃~Y .PredD(X;~v, ~Y)

where ` Ξ ok, E ≺ D ≺ C, Ξ(PredD) = (n, ψ) and | ~v, ~Y |= n

Figure 1. Predicate Family Axioms

predicate family. A predicate family is a set of formulae indexed by
class, where each formula describes how that class represents the
abstraction. A predicate family is written by placing the first char-
acter in blackboard bold font, e.g. � red, and is defined by a finite
partial function from class names, � , to the arities and formulae Ψ
of the class’s abstraction, e.g. � red : � ⇀ (� ×Ψ). The family is
well formed, written ` � red ok, if the following three constraints
are meet.

• ∃C ∈ � .dom(� red) = (↓ C) (where (↓ C) is a down-
closed subset of class names with respect to the subtyping re-
lation)

• ∀(n, ψ) ∈ cod(� red). | FV (ψ) |≤ n
• ∀C,D. D ≺ C ∧ � red(C) = (n, ψ) ∧

� red(D) = (n′, ψ′)⇒ n ≤ n′

The constraints ensure the family is defined for all subclasses, that
the formula does not have more free variables than the specified
arity and that the definition in any subclass can not have a smaller
arity. We assume an ordering on variables that is used to bind pred-
icate arguments to free variables, but will elide such details in this
document. We define the predicate family environment, Ξ, as a set
of predicate definitions indexed by predicate name.

We extend separation logic with abstract predicates, written
PredC(X;~v) to indicate that the object X satisfies an element
from the class C or below of the predicate family � red with argu-
ments ~v. In object-oriented programming an object could be from
one of many classes; abstract predicates mirror this by asserting that
an element from a set of properties holds.

We add four axioms to separation logic, given in Figure 1. The first
rule, Open, allows a predicate to be opened if the class of the object
is known. The second allows an abstract predicate to be constructed
given knowledge of the class the object belongs to, providing that
the formula for the abstraction holds. The remaining two rules al-

class Cell {
Object contents;
/*@ predicate

Value(this;X) = this.contents |-> X /\ X != null@*/

/*@ pre: Value(this;X) @*/
Object get() {...}
/*@ post: Value(this;X) /\ ret = X /\ X != null @*/

/*@ pre: Value(this;_) /\ newValue != null@*/
void set(Object newValue) {...}
/*@ post: Value(this;newValue) @*/

}

class Recell extends Cell {
Object backup;
/*@ predicate

Value(this;X,Y)
= (this.contents |-> X /\ X != null)
* (this.backup |-> Y /\ Y != null) @*/

/*@ pre: Value(this; X,_) /\ newValue != null@*/
void set(Object newValue) {...}
/*@ post: Value(this; newValue,X) @*/

}
Figure 2. Example using predicate families

low abstract predicates to be cast up and down the inheritance hier-
archy.

Figure 2 provides an example using abstract predicate families. The
predicate family � alue is used to abstract away the fields from the
pre- and post-conditions of the methods. We omit the subscript
from an abstract predicate if it is the same as the enclosing class.
An additional annotation is used to specify the local definition; how
this class represents the abstraction. For the Cell class the local
definition is

Value(this;X) = this.contents |-> X /\ X != null

In this example the axioms upcast and downcast prove the following
two implications.

V alueRecell(X; v, v′)⇒ V alueCell(X; v) (upcast)

V alueCell(X; v) ∧X : Recell⇒ ∃v′.V alueRecell(X; v, v′)
(downcast)

Using these implications the Recell’s specification is compatible
with the Cell’s, because we can use (downcast) to satisfy (1) and
(upcast) for (2). We require the open and close axioms to prove that
the method bodies meet the specifications given with respect to the
predicate families.

So far we have only considered overridden methods; however, the
get method is inherited by the Recell class. We must check the
body of the method is correct with respect to both the Cell’s and
Recell’s local definition of the Value predicate. Hence when vali-
dating the Recell we must also have the Cell’s code available.

We can summarise the class writer’s burden as the following tasks.

• Give a local definition for all the required predicates.

• Give a pre- and post-condition for each method.

• Check method bodies satisfy the pre- and post-conditions.

• Check overridden methods are compatible with the super-
class’s specification.

• Check bodies of inherited methods against new local defini-
tions of predicates.

Conclusions and Future work

The notion of abstract predicate families outlined in this document
shows promise in providing a usable logic for reasoning about Java
like languages. The predicate definitions have been treated in a
global way in this document; however by scoping the definitions
reasoning about encapulsation is greatly improved. This reasoning
can also be used to prove properties about ownership transfer such
as O’Hearn at al’s example of a memory manager [2].

1 References

[1] M. Abadi and L. Cardelli. A theory of objects. Springer, 1996.

[2] P.W. O’Hearn, H.Yang, and J.C. Reynolds. Separation and in-
formation hiding. In Proceedings of POPL, 2004.

[3] P.W. O’Hearn, J.C. Reynolds, and H. Yang. Local reasoning
about programs that alter data structures. In Proceedings of
CSL, 2001.

