When Separation logic met Java

Matthew Parkinson

Joint work (in progress) with Gavin Bierman

|
When Separation logic met Java —p. 1

Overview

In this talk | will give
* A separation logic for (a subset of) Java
* Demonstrate the difficulties in reasoning
* Propose a solution

|
When Separation logic met Java — p. 2

Assertion language

P,Q false Logical false
PAQ Classical conjunction
PV Q Classical disjunction
P=Q Classical implication
dx. P existential quantifier
empty empty heap
PxQ Separating conjunction
P — Q) Separating implication
E=F expression equality
E.f — E’ field points to
E:C object of type

When Separation logic met Java — p. 3

Proof rules

Here are two of the axioms

{z.f— _to.f=y{z.f—y}

{femptyle = new C();{(z.fi—null)*...x(z.f, —null)}
where class C' has fields fq, ..., f,.

Here is the frame rule

(P rstmtiQ}
{P x R}stmt{Q * R}

where F'V (R) N modifies(stmt) = ()

We use y.f — _ as a shorthand for Jz(y.f — x).

|
When Separation logic met Java — p. 4

Example

class Cell {
(bj ect contents;

[*@pre. this.contents |-> @/
voi d set (Cbject o) {
this.contents = o;

}
[*@post:. this.contents |-> o0 @/

[*@pre: this.contents |[-> X @/
(bj ect get () {
C x;x =this.contents;return Xx;

}
[*@ost: this.contents |[-> X /\ ret = X @/

|
When Separation logic met Java — p. 5

A problem with inheritance

class Cell {
(bj ect contents;

/*@re: this.contents |[-> @/
void set(Cbject o) {...}
/*@ost: this.contents |-> 0 @/

}

cl ass Recell extends Cell {
hj ect backup;

[*@re: this.contents |-> X * this.backup |-> @/

void set(Cbject o) {...}
/[*@ost: this.contents |-> o0 * this.backup [-> X @/

}

|
When Separation logic met Java — p. 6

A problem with inheritance

Standard behavioural subtyping requires us to prove

pre(Cell.set) = pre(Recell.set)
post(Recell.set) = post(Cell.set)

l.e.

this.contents — = this.contents — X x this.backup — _

this.contents — o * this.backup — X = this.contents — o

but these are false in separation logic ;-(

We need some form of abstraction!

|
When Separation logic met Java — p. 7

Abstract predicate families

class Cell {

(bj ect contents;

/*@Val ue(this;x) =this.contents [-> x /\ x != null @/
/*@re: Value(this;) /\ o!= null @/

void set(Cbject o) {...}

/| *@ost: Value(this;o) @/

}

cl ass Recell extends Cell {

hj ect backup;

/*@ Val ue(this;x,y) = this.contents |[-> x /\ x !'= null
* this.backup |-> y@/

[*@re: Value(this; X,) /\ o!=null @/

void set(Cbject o) {...}

/| *@ost: Value(this;o, X) @/

}

|
When Separation logic met Java — p. 8

Abstract predicate families

We unfortunately can’t just introduce one predicate, we need an

entire family of abstract predicates!!!

* Each class has its own definition of the abstract predicate

* |n Java we can cast objects up and down the inheritance
hierarchy.

* We need abstract predicates to have this notion

We need to extend our assertions

PQ :=

| ac(x; Ey,..., E,) abstract predicate family

When Separation logic met Java — p. 9

Compatibility

We want to be able to “cast” predicates

Valuecey(this; x) R Valuegecer (this; x,y)

Valuecey(this; x) L Valuegecer (this; x,y)

|
When Separation logic met Java — p. 10

Compatibility

We want to be able to “cast” predicates

Valuecey(this; x) RS Valuegecer (this; x,y)
Valuecey(this; x) L Valuegecer (this; x,y)

The actual rules are

ap(r;T,y) = ac(z;T) (upcast)

ac(x;T) N : E = dJy.ap(x; T, 7) (downcast)
where £ <D < C

These rules give us the behavioural subtyping we required.

|
When Separation logic met Java — p. 10

Open and Close

We need to be able to open and close abstract predicate
families.

=F=ac(ze;Er,...,Ey) N : C = P|lEy/x1,...,Ey/zy] (Open)
=F= PlE/x1,....Ey/en| N C = ac(z; By, ..., E,) (close)

where = defines o as (A\(x1,...,zy,).P) for class C

|
When Separation logic met Java — p. 11

Conclusions, Related and Future work

* The abstraction APF provide allows inheritance to work.
* Soundness proof and examples — full paper in preparation

* Underlying priniciple Abstract Predicates
© Scoping of definitions
© Can be used in module system

° Provides a different (better?) abstraction mechanism
than O’Hearn et al's Hypothetical frame rule
* multiple instances of a datatype
* malloc and free for variable size blocks

Future work
* Parametric abstract predicates — Generics

* Passive abstract predicates — List iterators
* Ownership types

|
When Separation logic met Java — p. 12

The End?

When Separation logic met Java — p. 13

	Overview
	Assertion language
	Proof rules
	Example
	A problem with inheritance
	A problem with inheritance
	Abstract predicate families
	Abstract predicate families
	Compatibility
	Compatibility

	Open and Close
	Conclusions, Related and Future work
	The End?

