
Compiling Exceptions Correctly

Graham Hutton and Joel Wright

Abstract. Exceptions are an important feature of modern programming
languages, but their compilation has traditionally been viewed as an ad-
vanced topic. In this article we show that the basic method of compiling
exceptions using stack unwinding can be explained and verified both sim-
ply and precisely, using elementary functional programming techniques.
In particular, we develop a compiler for a small language with exceptions,
together with a proof of its correctness.

1 Introduction

Most modern programming languages support some form of programming with
exceptions , typically based upon a primitive that abandons the current com-
putation and throws an exception, together with a primitive that catches an
exception and continues with another computation. In this article we consider
the problem of compiling such exception primitives.

Exceptions have traditionally been viewed as an advanced topic in compi-
lation, usually being discussed only briefly in courses, textbooks, and research
articles, and in many cases not at all. In this article, we show that the basic
method of compiling exceptions using stack unwinding can in fact be explained
and verified both simply and precisely, using elementary functional programming
techniques. In particular, we develop a compiler for a small language with excep-
tions, together with a proof of its correctness with respect to a formal semantics
for this language. Surprisingly, this appears to be the first time that a compiler
for exceptions has been proved to be correct.

In order to focus on the essence of the problem and avoid getting bogged
down in other details, we adopt a particularly simple language comprising just
four components, namely integer values, an addition operator, a single excep-
tional value called throw, and a catch operator for this value. This language
does not provide features that are necessary for actual programming, but it does
provide just what we need for our expository purposes in this article. In partic-
ular, integers and addition constitute a minimal language in which to consider
computation using a stack, and throw and catch constitute a minimal extension
in which such computations can involve exceptions.

Our development proceeds in three steps, starting with the language of in-
teger values and addition, then adding throw and catch to this language, and
finally adding explicit jumps to the virtual machine. Starting with a simpler
language allows us to introduce our approach to compilation and its correctness
without the extra complexity of exceptions. In turn, deferring the introduction
of jumps allows us to introduce our approach to the compilation of exceptions
without the extra complexity of dealing with jump addresses.

1


