
1

Certification of parameter size with dependent ML

Martin Hofmann, Munich

15th April 2004

Work partially funded by the IST-FET Project
Mobile Resource Guarantees No. IST-2001-33149

Martin Hofmann, Munich Certification of parameter size with dependent ML 15th April 2004



2

Motivation
Let f:int*int->unit be a system function (native method).

We have a Java Bytecode P program using f.

We want to certify that whenever f(x,y) is called within P the parameters x,y
satisfy some constraint phi(x,y).

“Certify” = provide a formal, independently checkable proof about the operational
semantics of P.

Martin Hofmann, Munich Certification of parameter size with dependent ML 15th April 2004



3

Possible Applications
Provider of 3rd party software updates for appliances, phones, set top boxes etc.,
can endow their programs which such certificates to convince users of their safety
(not usefulness!).

Possible system functions f:

• controlling a brake

• billing a credit card

• spinning a washing mashine drum

• . . .

Martin Hofmann, Munich Certification of parameter size with dependent ML 15th April 2004



4

Approach
Write programs in high-level functional language

Use type system to describe parameter size bounds

Compile HLL program into bytecode

Translate type derivation into proof in bytecode logic.

NB: In MRG project we have developed all the infrastructure (HLL, Bytecode
logic) and carried out the above for heap size certification.

Martin Hofmann, Munich Certification of parameter size with dependent ML 15th April 2004



5

Tasks

• Find type system that can describe bounds on parameter size

• Express such bounds in bytecode logic while maintaining useful properties of
the logic (VCG, modularity, “recursive proof”).

• Make it happen

Martin Hofmann, Munich Certification of parameter size with dependent ML 15th April 2004



6

Expressing bounds in program logic
Use instrumented operational semantics: E, h ` e ⇓ v, h′, ρ. Here ρ is a “resource
record” representing accrued resource usage.

In our case ρ will just be a boolean which represents that the parameter bounds
have been satisfied.

Evaluation rule for f : E, h ` f(x, y) ⇓ (), h, phi(E[x], E[y]).

Use ∧ on ρ for sequential composition.

VDM-style bytecode logic:

e : Φ⇐⇒ ∀E, h, h′, v, ρ.E, h ` e ⇓ v, h′, ρ⇒ (E, h, h′, v, ρ) ∈ Φ

Prove in logic main : {(E, h, h′, v, ρ) | ρ = true}

Martin Hofmann, Munich Certification of parameter size with dependent ML 15th April 2004



7

Using Types
Assume that constraint phi(x,y) is a conjunction of linear inequalities.

Assign f the “type”

f : {(x, y) : int*int | phi(x, y)} → unit

If you succeed to type “main” using f with this type only then the desired
parameter bound will be guaranteed.

Martin Hofmann, Munich Certification of parameter size with dependent ML 15th April 2004



8

Using Dependent ML
Want a system that can express such types yet has desirable algorithmic properties.

Proposal: Xi’s “Dependent ML”

Alternative: Constraint type systems.

Martin Hofmann, Munich Certification of parameter size with dependent ML 15th April 2004



9

Dependent ML
Index sorts: int,rational,... + closed under product.

Types: may depend on index sorts (type families) but not on other types.

In this way, type checking and inference are decidable and may be reduced to
constraint solving over the index sorts.

Martin Hofmann, Munich Certification of parameter size with dependent ML 15th April 2004



10

Signature
Use type families Int, Bool : int -> Type where Int(x) contains just the
integer x and Bool(x) contains true if 1 ≤ x and false otherwise.

0 : Int(0)
1 : Int(1)
plus : Pi x,y:int.Pi xx:Int(x).Pi yy:Int(y).Int(x+y)
times_q : Pi x:int.Pi xx.Int(x).Int(q.x)
true : Pi x:int|1<=x.Bool(x)
false : Pi x:int|x<= 0.Bool(x)
leq : Pi x,y:int.Int(x) -> Int(y) -> Bool(1+y-x)

Typing rule for if-then-else:

Γ ` t1 : Bool(i) Γ, 1 ≤ i ` t2 : T Γ, i ≤ 0 ` t3 : T
Γ ` if t1 then t2 else t3 : T

(If)

Martin Hofmann, Munich Certification of parameter size with dependent ML 15th April 2004



11

Example
f : Pi x,y:int|x+y<=10.Int(x) -> Int(y) -> Unit

main : Pi x,y:int.Int(x) -> Int(y) -> Unit
main-body = lambda x,y:int.lambda xx:Int(x).lambda yy:Int(y).

if leq[x+y,10](plus[x,y](xx,yy))
then f[x,y](xx,yy)
else f[0,0](0,0)

The easiest way to maintain a bound is by explicitly checking it.

Martin Hofmann, Munich Certification of parameter size with dependent ML 15th April 2004


