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Recursive definitions and call-by-value Call-by-name or lazy languages naturally support the eval-
uation of arbitrary recursive definitions x = e[x]. On-demand unrolling of e leads either to the fixpoint
when it exists, or to divergence otherwise (as in x = 1 + x). This is not possible with a strict call-by-value
strategy, where the right-hand side e[x] must be evaluated exactly once and at definition time. Therefore,
CBV languages must restrict the expressions e[x] allowed as r.h.s. of recursive definitions – typically, in ML,
e[x] must be a function abstraction λx.e′.

However, less drastic restrictions can remain compatible with CBV. A famous example is Scheme’s
letrec construct [8, 9], which builds on a “backpatching” imperative semantics. Operationally, to evaluate
(letrec (x e) f), first, x is bound to a reference initialized to a special undefined value; then, e is evaluated
(causing an error if the undefined value of x is used); finally, x is updated (via reference assignment) with
the value thus obtained.

A variant of the backpatching scheme is the in-place update scheme [3] used in Objective Caml. Here,
the additional reference is avoided by restricting the right-hand side to evaluate to a heap-allocated block of
statically-predictable size; then, x is initialized to a block of that size containing undefined fields, which is
eventually updated in place by copying the fields of the value of e.

Reduction semantics without a store A weakness of these extended CBV recursive definitions is that
their semantics is given in terms of an updatable store. In [7, 5], we give a store-less reduction semantics
that captures the expressiveness and limitations of the in-place update scheme. The semantics can be
viewed as a CBV evaluation strategy imposed (via evaluation contexts) on Ariola and Blom’s equational
theory for recursive definitions [1]. The five fundamental rules, suitably restricted using evaluation contexts
and side conditions to avoid variable capture, are the following (b ranges over mutually recursive bindings
x1 = e1, . . . , xn = en).

C[letrec b in e] → letrec b in C[e] lifting
letrec b1, x = (letrec b2 in e), b3 in f → letrec b1, b2, x = e, b3 in f internal merging

letrec b1 in letrec b2 in f → letrec b1, b2 in f external merging
letrec b1, x = e, b2 in C[x] → letrec b1, x = e, b2 in C[e] external substitution

letrec b1, x = e, b2, y = C[x], b3 in f → letrec b1, x = e, b2, y = C[e], b3 in f internal substitution

We reflect the constraints imposed by the in-place update scheme in the semantics, using annotations on
every recursive definition giving the expected size for the right-hand side if known: x =[n] e or x =[?] e. The
semantics gets stuck if the value of a not-yet-evaluated definition is needed.

Compilation scheme and its correctness We formalize the in-place update scheme as a translation
from a pure CBV λ-calculus with letrec down to an imperative λ-calculus with explicit store, but no
letrec. In the translation T , a source letrec definition becomes a series of let binding variables of known
size n to initial blocks of size n, followed by left-to-right evaluation of the definitions: x =[n] e becomes
update(x, T (e)); . . ., while x =[?] n becomes let x = T (e) in . . . We prove that this compilation scheme

1



preserves the semantics of the source program: if e reduces to a value, or reduces infinitely, or gets stuck,
then so does T (e). The proof is not a simple simulation property “if e → e′, then T (e) ∗→ T (e′)” (which does
not hold), but makes use of a more complicated translation scheme S that performs some administrative
reductions on the fly (i.e. T (e) ∗→ S(e)) and is such that if e → e′, then either e′ and S(e) are stuck, or
S(e) ∗→ S(e′), or there exists e′′ such that e′ → e′′ and S(e) +→ S(e′′).

Application to mixin modules In [6, 5], we define a language of CBV mixin modules and a compilation
scheme by translation to CBV λ-calculus with extended letrec. The gist of the translation is that output
components of mixins become record fields parameterized by the input components referenced. For instance,
a mixin structure with two inputs x, y and two outputs y = e[x, y] and z = f [x] becomes the record
{y = λx.λy.e[x, y]; z = λx.f [x]}. Most mixin operators translate to simple record operations, directed by
the types of the mixins. For instance, mixin composition A + B becomes record concatenation. However,
mixin operations that connect identically-named inputs and outputs, such as freezing and closing, give rise to
recursive definitions of the form x = A.f x. For instance, closing a mixin A with inputs x, y and outputs x, y,
where x depends on x and y on x and y, is compiled to letrec x = A.x x, y = A.y x y in {x = x; y = y}.
These recursive definitions can be handled by our extended CBV letrec construct, and compiled to efficient
imperative code using the in-place update scheme. The expected size annotations can be derived from the
types of the source mixins.

Application to recursive modules We have recently extended the Objective Caml language with
the ability to define structures (basic modules) via mutually-recursive definitions. Most practical uses of
recursively-defined modules involve functor applications in the right-hand sides, as in

module rec A : SIGA = struct ... ASet.t ... end and ASet : SIGASET = Set.Make(A)

It is therefore important that this construct does not restrict the r.h.s. to be syntactic structures struct. . . end.
Again, the compilation of these recursive module definitions relies on the in-place update scheme, using the
signatures of the structures to determine the expected sizes. An issue that remains largely open is the static
detection of ill-founded recursive module definitions, which is currently handled by an ad-hoc combination
of typing restrictions and initialization of structure fields to “bottom” values such as λx. raise Undefined
for function types.

Enforcing correct recursive definitions via static typing As mentioned earlier, our extended CBV
recursive binding cannot evaluate arbitrary definitions. In particular, it gets stuck on ill-founded definitions
(x = x+1) and on definitions where a value is needed too early (x = f 0, f = λy.1). It is therefore desirable
to statically rule out these non-evaluable definitions using a type system. The first such type system was
given by Boudol [2]; it relies on annotated function types τ

1→ σ and τ
0→ σ to denote functions that are

non-strict (1) or possibly strict (0) in their argument. Then, a recursive definition x = f x is allowed only
if f has a 1→ type. This type system was refined by Hirschowitz [5] to handle curried applications. There,
function types τ

n→ σ are annotated by an integer n giving the number of function applications that can
be performed without using the value of the parameter of type τ . This type system is expressive enough
to show that the terms arising from the translation of mixin modules are well-typed, and therefore evaluate
safely. Recent work by Dreyer [4] develops a more powerful type and effect systems that tracks references
to recursively-defined variables as formal computational effects. All these type systems are intended for
intermediate languages and are arguably too complex to be applied to source languages and exposed to the
programmers. For the application to Caml’s recursive modules, we are currently looking for a simpler (and
less expressive) extension to the type system of the module language that rules out bad recursive definitions.
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