
Extended recursive definitions

in call-by-value languages

Tom Hirschowitz Xavier Leroy J. B. Wells

ENS Lyon INRIA Rocquencourt Heriot-Watt University

1



Recursive definitions

let rec x = e[x] in ...

let rec x = e[x,y] and y = f[x,y] in ...

Under call-by-name or lazy evaluation:

r.h.s. are arbitrary expressions

evaluation is equivalent to on-demand unrolling e[e[e[...]]].

Under call-by-value:

r.h.s. are traditionally restricted to be syntactic values λx. e

2



Extended call-by-value recursive definitions

Can we do call-by-value evaluation of more general recursive

definitions? Example:

let F = λg. λx. ... g ...

let rec g = F g

This should evaluate like let rec g = λx. ... g ...

Applications: some object encodings; recursive modules; CBV

mixin modules.

Challenge: evaluate r.h.s. exactly once and in a predictable order.

(No lazy evaluation.)

3



Application 1: recursive ML modules

module rec A =

struct type t = Leaf of int | Node of ASet.t

let compare t1 t2 = ...

end

and ASet = Set.Make(A)

Most practical examples involve a functor application in a r.h.s.

After type erasure, compiles to a let rec involving function ap-

plications in r.h.s.

4



Application 2: call-by-value mixin modules

(Hirschowitz, Leroy, 2002-2004)

Mixin modules = modules with holes (deferred components).

mixin M = mix let M = {
import y : int -> int

export y = λx. ...y... y = λy.λx. ...y...

export z = y 0 z = λy. y 0

end }

module A = close(M) let A =

let rec y = M.y y

and z = M.z y

in { y = y; z = z }

5



Compilation schemes for extended recursion

let rec x = e[x,y] and y = f[x,y] in ...

Scheme’s letrec: update variables (via references)

let rx = ref Undef and ry = ref Undef in

let x = e[!rx,!ry] and y = f[!rx,!ry] in

rx := x; ry := y;

...

The “in-place update trick” (Cousineau et al):

update memory blocks in place

let x = newblock(2, Undef) and y = newblock(1, Undef) in

update(x, e[x, y]);

update(y, f[x, y]);

...

(Need to guess in advance the memory size of the values of the r.h.s.)

6



In-place update in action

U U Ux y

value of e[x, y] value of f [x, y]

7



A store-less reduction semantics for in-place update

Capture the expressiveness and limitations of the in-place update

scheme without using a store.

A strategy imposed on Ariola & Blom’s five fundamental equiva-

lences for recursive definitions.

Use evaluation contexts to impose a deterministic, CBV evalua-

tion order.

Add size annotations on definitions and an abstract notion of

value size.

The semantics get stuck exactly when the in-place update scheme

would lead to using the undefined value.

8



Ariola and Blom’s equational theory

Lifting:
C[letrec b in e]

≈ letrec b in C[e]

Internal merging:
letrec b1, x = (letrec b2 in e), b3 in f

≈ letrec b1, b2, x = e, b3 in f

External merging:
letrec b1 in letrec b2 in f

≈ letrec b1, b2 in f

External substitution:
letrec b1, x = e, b2 in C[x]

≈ letrec b1, x = e, b2 in C[e]

Internal substitution:
letrec b1, x = e, b2, y = C[x], b3 in f

≈ letrec b1, x = e, b2, y = C[e], b3 in f

9



Formalization of a compilation scheme

The in-place update scheme = a compilation scheme from ex-

tended letrec to an imperative language with updateable blocks.

Prove the correctness of this compilation scheme: if e reduces

to a value, or reduces infinitely, or gets stuck, then so does its

translation.

(The proof is not quite a simulation argument and is surprisingly

difficult.)

10



Static typing of extended recursive definitions

Extended recursive definitions can get stuck at run-time:

let rec x = x + 1 let rec x = f 0 and f = λy.1

Use a type system to guarantee that this does not happen.

Boudol’s type system: annotated function types
1→ (non-strict function) and

0→ (possibly strict).

let rec x = f x allowed iff f : τ1
1→ τ2.

Hirschowitz’s generalization: function types
n→

where n is the “delay” between passing the parameter and actually

using it.

Dreyer’s effect system: track the “effect” of using the value of

a recursively-defined identifier.

11



Future work

These type systems are expressive but too complex to be exposed

to the programmer.

→ For recursive modules, find coarser, simpler type system.

12


