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Functional programming is particularly well suited for equational reasoning – referential trans-
parency ensures that expressions in functional programs behave as ordinary expressions in mathemat-
ics. However, unstructured programming can still difficult formal treatment. As such, when John
Backus proposed a new functional style of programming in his 1977 ACM Turing Award lecture, the
main features were the absence of variables and the use of functional forms or combinators to combine
existing functions into new functions [1]. The choice of the combinators was based not only on their
programming power, but also on the power of the associated algebraic laws. Quoting Backus: “Associ-
ated with the functional style of programming is an algebra of programs [. . . ] This algebra can be used
to transform programs and to solve equations whose “unknowns” are programs in much the same way
one transforms equations in high-school algebra”.

This style of programming is usually called point-free, as opposed to the point-wise style, where
the arguments are explicitly stated. The basic set of combinators used in this paper as been already
extensively presented in many publications, such as [6], and includes the typical products, with split
(· M ·) and projections fst and snd, sums, with either (· O ·) and injections inl and inr, and exponentials,
with curry · and application ap.

Although the point-free style has a rich calculus for reasoning about programs, there are still many
authors that resort to the point-wise style both for programming and for calculation. They claim that
the point-free style is not very natural since the intuitive meaning of programs can easily be lost, and
jokingly call it the pointless style. In fact, we agree that some point-free derivations are very long and
tedious, namely when dealing with higher-order functions. However, we don’t think this is an intrinsic
disadvantage of point-free, but merely lack of adequate combinators and proof methodology.

As such, the objective of this work is to improve the machinery that is used to perform point-free
calculations, namely in a higher-order setting. As Jeremy Gibbons puts it [3], “We are interested in
extending what can be calculated precisely because we are not interested in the calculations themselves
[. . . ]”, or, in other words, we aim at extending the calculus with new useful operators that help reducing
the burden of proofs just to the creative parts.

Point-free programming is usually complemented with extensive use of recursion patterns – higher-
order operators that encapsulate typical patterns of recursion, such as the well-known fold or catamor-
phism. They prevent the use of arbitrary recursive definitions, and also have a nice set of equational
laws. Although initially they were only defined for lists, it became clear that they could be generalized
for any recursive data type viewed as fixed point of a functor [5]. In this paper we will only use the
catamorphism, that given a function of type g : F A → A is denoted by (|g|)F : µF → A, the function
that builds its result by replacing the constructors of the input by g. One of the most important laws
about this recursion operator is fusion – given a strict f , if f ◦ g = h ◦ Ff then f ◦ (|g|)F = (|h|)F .

Suppose that we want to obtain a efficient version of the reverse function using the accumulation
strategy introduced by Richard Bird [2]. This technique uses fusion to derive it from an inefficient
version using the concatenation operator cat : List A× List A → List A.

reverse : List A → (List A → List A)
reverse = cat ◦ (|nil O (cat ◦ swap ◦ (wrap× id))|)

In order to perform this derivation we must use the associativity property of cat, that is usually
expressed in point-free as cat ◦ (id × cat) ◦ assocr = cat ◦ (cat × id). Unfortunately, this formulation is
not very practical because we need refer to the operator in curried form, and its use would lead to a
lengthy derivation. A simpler calculation can be obtained if an uncurried version of the composition
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combinator was available. This trick was already mentioned in some publications, such as [4], but it is
usually defined in point-wise style which invalidates a pure point-free calculus. Instead, we define it as
follows.

comp : (CB ×BA) → CA

comp = ap ◦ (id× ap) ◦ assocr

Using comp we can express associativity as ⊕◦⊕ = comp◦(⊕×⊕). Now we can easily derive by fusion the
implementation of reverse using an accumulation parameter, obtaining (|id O (comp◦swap◦(cons× id))|).

Consider now the function that determines the initial sums of a list. Again, we can derive an
optimized version using the accumulation technique and fusion. Taking ⊕ = ap◦((List◦plus)× id)◦swap
we have the following specification.

isums : List Nat → (Nat → List Nat)
isums = ⊕ ◦ (|nil O (⊕ ◦ swap ◦ (id× (cons ◦ (zero M id))))|)

Similarly, we can simplify the derivation if we use an uncurried version of the split combinator.

split : (BA × CA) → (B × C)A

split = (ap× ap) ◦ ((fst× id) M (snd× id))

Equipped with split we can redefine ⊕ ◦ (cons × id) = cons ◦ (plus × ⊕) ◦ ((fst × id) M (snd × id)), a
property of ⊕ need for the calculation, simply as ⊕ ◦ cons = cons• ◦ split ◦ (plus × ⊕). The resulting
accumulation is (|nil O (comp ◦ swap ◦ (plus× (cons• ◦ split ◦ (id M id))))|).

Further complications arise if we want to apply the accumulation technique to derive functions
with two accumulating parameters. For example, a tail recursive function to compute the height of a
leaf tree, whose data type is defined as LTree A = µ(A + Id × Id), can be derived from the following
specification.

height : LTree A → (Nat → (Nat → Nat))
height = max• ◦ plus ◦ (|zero O (succ ◦max)|)

This calculation can be simplified by introducing the following left-exponentiation operator, a kind
of dual to the normal exponentiation, that enjoys nice equational laws like f• ◦ •g = •g ◦ f•.

•f : AC → AB

•f = ap ◦ (id× f)

The resulting tail-recursive height is (|max O •succ ◦ comp• ◦ split|). We agree that the resulting
catamorphisms are cumbersome, but converting them to point-wise is straightforward. We suggest the
reader to perform that task, in order to check that the optimized functions behave as expected.

We have already developed a library that enables programming in Haskell in a true point-free style
(see http://wiki.di.uminho.pt/twiki/bin/view/Alcino/PointlessHaskell). Using this library,
we intend to develop an automatic transformation system for point-free programs using term rewriting,
hoping to prove also in practice the advantages of the point-free calculus over the point-wise one.
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