
Making the Point-free Calculus Less Pointless

Alcino Cunha
Jorge Sousa Pinto

Departamento de Informática, Universidade do Minho
4710-057 Braga, Portugal

{alcino,jsp}@di.uminho.pt

APPSEM’04, April 16th

Introduction

Associated with the functional style of programming is an algebra of
programs [. . .] This algebra can be used to transform programs and
to solve equations whose “unknowns” are programs in much the same
way one transforms equations in high-school algebra.

John Backus

• The main features of Backus functional style were the absence of variables
and the use of specific combinators to combine existing functions into
new functions.

• The choice of the combinators was based not only on their programming
power, but also on the power of the associated algebraic laws.

• This style of programming is usually called point-free.

Making the Point-free Calculus Less Pointless 1

Introduction

• Although the point-free style has a rich calculus for reasoning about
programs, most programmers resort to the point-wise style both for
programming and for calculation.

• It is claimed that the point-free style is not very natural since the intuitive
meaning of programs can easily be lost, and has been jokingly called the
pointless style.

• In fact, some point-free derivations are very long and tedious, namely
when dealing with higher-order functions.

• We aim at extending the calculus with new useful operators and tools
that help reducing the burden of proofs just to the creative parts.

• This work is being carried out in the context of the PURe project
(Program Understanding and Re-engineering: Calculi and Applications).

Making the Point-free Calculus Less Pointless 2

Catamorphisms

• Point-free programming is usually complemented with extensive use of
recursion patterns.

• The best known is the fold or catamorphism - given a function of type
g : F A → A is denoted by (|g|)F : µF → A, the function that builds its
result by replacing the constructors of the input by g.

• One of the most important laws about this recursion operator is fusion.

f ◦ (|g|)F = (|h|)F ⇐ f ◦ g = h ◦ Ff ∧ f strict

• For lists in Haskell we have the foldr.

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

Making the Point-free Calculus Less Pointless 3

An Example

• Take the typical definition of reverse.

reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]

• An efficient version using accumulating parameters can be derived
from the following specification using fusion and the associativity of
concatenation.

reverse’ :: [a] -> [a] -> [a]
reverse’ l m = reverse l ++ m

• But first we need to state these equations using the point-free style and
recursion patterns.

reverse′ = cat ◦ (|nil O cat ◦ swap ◦ (wrap× id)|)1+A×Id

Making the Point-free Calculus Less Pointless 4

Point-free Uncurried Combinators

• The associativity property of cat is usually expressed as follows.

cat ◦ (id× cat) ◦ assocr = cat ◦ (cat× id)

• A simpler calculation can be obtained if an uncurried version of the
composition combinator was available.

comp : (CB ×BA) → CA

comp = ap ◦ (id× ap) ◦ assocr

• Associativity could then be more conveniently expressed as follows.

cat ◦ cat = comp ◦ (cat× cat)

Making the Point-free Calculus Less Pointless 5

Back to the Example

• From the calculation we get the following catamorphism.

reverse′ : List A → (List A → List A)
reverse′ = (|id O comp ◦ swap ◦ (cons× id)|)1+A×Id

• Indeed, even with for this simple example it is already difficult to
understand its behavior. Lets move to back to the point-wise style.

reverse’ :: [a] -> [a] -> [a]
reverse’ = foldr (\x y z -> y (x:z)) id

• And finally introduce explicit recursion.

reverse’ :: [a] -> [a] -> [a]
reverse’ [] y = y
reverse’ (x:xs) y = reverse’ xs (x:y)

Making the Point-free Calculus Less Pointless 6

A Left-Exponentiation Combinator

• Further complications arise if we want to apply the accumulation
technique to derive functions with two accumulating parameters. For
example, a tail recursive function to compute the height of a leaf tree
can be derived from the following specification.

height : LTree A → (Nat → (Nat → Nat))
height = max• ◦ plus ◦ (|zero O succ ◦max|)A+Id×Id

• This calculation can be simplified by introducing the following left-
exponentiation operator, for f : B → C.

•f : AC → AB

•f = ap ◦ (id× f)

• The resulting tail-recursive height is (|max O •succ ◦ comp• ◦ split|).

Making the Point-free Calculus Less Pointless 7

Ongoing and Future Work

• Pointless Haskell

– Enables programming in Haskell in a true point-free style.
– It includes a limited form of implicit coercion that allows types to be

viewed as simple sums of products.

• Dr. Hylo

– A tool that derives hylomorphisms from explicit recursive definitions.
– It is being improved in order to derive point-free definitions and to

identify more specific recursion patterns.

• Point-free Theorem Prover

– Simple prototype based on a standard term rewriting and unification
engine.

– To what extent can proofs be fully automated?

Making the Point-free Calculus Less Pointless 8

Conclusions

• We believe that, with the appropriate machinery, the point-free style is
indeed better for proving properties about functional programs.

• But we agree that programming in this style is not always recommended.

• We are developing tools that allow one to program in one style and
calculate in the other.

• A useful comparison is that of mathematical transforms, such as the
Fourier transform or the Laplace transform - the domain of definition is
changed in order to make certain manipulations more easier to perform.

• For more information visit the PURe project website.

http://www.di.uminho.pt/pure

Making the Point-free Calculus Less Pointless 9

