
Generic programming for (co)inductive types in Type Theory

Marcin Benke

Chalmers Technical University

Makoto Takeyama

AIST Amagasaki, Japan

Motivation: reasoning about state transition systems — of interest to AIST

industrial partners.

Related work

Gimenéz 1996 A Calculus of Infinite Constructions and its application to the

verification of communicating systems.

Benke, Dybjer, Jansson 2003 Universes for generic programs and proofs in

dependent type theory

Generic functional programming

• Basic idea: define generic functions by induction on the definition of a

data type

• Examples:

– generic Boolean equality: SML (built-in) and Haskell (derivable class)

– generic map combinators, and generic iteration and recursion over

(co)inductive datatypes

• Benefits :

– highly reusable and adaptive definitions

– well suited for building libraries of programs, theorems and proofs

Dependent types

Examples :

• Vect n — vectors (lists) of length n

• data structures with invariants: ordered lists, balanced trees, AVL-trees,

red-black-trees, etc.

• In general: we can express more or less arbitrary properties of programs

and data structures.

• Universe of codes for datatypes — the natural setting for generic

programming

The ideas presented in this talk have been implemented and tested using the

Alfa proof editor.

Universes

• A universe consists of

– a set of codes for datatypes: Sig : Set

– a decoding function: T : (Σ : Sig) → Set

• Example : a universe for single-sorted algebras is described by the set of

signatures Sig = [Nat], and the decoding function T which maps a

signature to (the carrier of) its term algebra.

• the booleans have signature [0, 0], the natural numbers — [0, 1],

A universe for inductive families

The set of codes for inductive families indexed by I :

SigI = [ArityI]

ArityI = data Nil (i : I) | NonRec (A : Set)(A → SigI) | Rec I SigI

Example: vectors

n ∈ Nat A ∈ Set

Vec n A ∈ Set Vnil ∈ Vec 0 A

x ∈ A xs ∈ Vec n A

Vcons xxs ∈ Vec (n + 1) A

The signature for vectors:

[Nil 0, NonRec A λ .NonRec Nat λn.Rec n Nil (S n))]

A generic iterator is defined basing on the initial algebra diagram:

FΣTΣ
IntroΣ - TΣ

FΣ C

FΣ(iterΣ C d)
?

d
- C

iterΣ C d

?

For most universes, instead of initial algebras and iterators, one can consider

final coalgebras and coiterators

FΣTΣ
� outΣ

TΣ

FΣ C

FΣ(coiterΣ C d)
6

�
d

C

coiterΣ C d
6

Universes for coinductive types

• The dual of inductive types — coinductive types, enable us to build and

reason about infinite structures, e.g. streams.

• Gimenez in his Calculus of Infinite Constructions lays foundations for

coinductive types in type theory and gives some proofs in Coq (including

Park’s coinduction principle for streams).

• For many universes, we can get coinductive types by slightly altering the

decoding function.

Some examples

By defining functions mapping transition systems to codes we can define e.g.

• the set of all possible runs (traces)

• the tree containing all possible runs

• a set of runs fulfilling certain safety criteria

• a proof that all runs satisfy safety criteria

By mapping codes to codes, we can, define generically inductive families for

equality and bisimulation.

Having done that we generalize Gimenez’s results by proving generic Park’s

principle

Conclusions

• Better representation for inductive families

• Constructing universes for coinductive types is no more difficult in the

inductive case. . .

• . . . but using them might be much more difficult

• Still there is hope for applying these techniques for reasoning about

transition systems

• Work in progress. . .

Thank you!

Tree of all runs

State::Set
trans :: State -> [State]

star’ (s::State)(ss::[State]) :: Arity State
= case ss of {

[] -> Nil s;
(x:xs) -> Rec x (star’ s xs);}

star (s::State) :: Arity State
star s = star’ (trans s)

stSig :: Sig State
stSig = [NonRec State star]

Park’s principle

package B = BaseConst
package Park(fi::B.Sig) where

T2 = And (B.T fi) (B.T fi)
SEqT (fi::B.Sig):: Sig T2 -- this one is hairy
EqT = T T2 (SEqT fi)
Rel::Type = T2 -> Set

RHom(R,S::Rel)::Set = (i::T2)-> R i -> S i

princ(R::Rel)::RHom R (FEq fi R) -> RHom R EqT
= CoIt T2 (SEqT fi) R

