
A Calculus for Symbolic Names Management

D.Ancona, E.Moggi∗

DISI, Univ. of Genova, v. Dodecaneso 35, 16146 Genova, Italy
email: {davide,moggi}@disi.unige.it

January 22, 2004

Abstract

We define a basic calculus MLN for manipulating symbolic names inspired by λ-calculi with extensible
records. The resulting calculus supports the use of symbolic names for meta-programming and program-
ming in-the-large, it subsumes Ancona and Zucca’s CMS, and partly Nanevski and Pfenning’s ν�, and
seems able to model some aspects of the mechanism of Java class loaders. We present two different ex-
tensions of the basic calculus, the first consider the interaction with computational effects (in the form of
imperative computations), the second shows how CMS can be naturally encoded into MLN .

1 Introduction

We introduce a basic λ-calculus MLN for manipulating (symbolic) names. The calculus involves three distinct
concepts (besides names X ∈ N):

• terms e ∈ E, a closed term corresponds to an executable program

• name resolvers, mapping names to terms, more specifically they denote partial functions N
fin→ E, we

write r.X for the term obtained by applying r to resolve name X

• fragments box r.e are terms abstracted w.r.t. a resolver r, i.e. they denote functions (N
fin→ E) → E, we

write e〈r〉 for the term obtained by linking fragment e using resolver r.

The aim of MLN is to provide a uniform framework for modeling several uses of symbolic names in program-
ming. We were motivated by the use of symbolic names for programming in-the-large, like that supported by
module systems [Car97, AZ02], and for meta-programming, more specifically partial evaluation [JGS93, Dav96],
staging [Tah99, She01], and run-time code generation [DP01, Nan02]. MLN turns out to be a simple core cal-
culus with a limited form of extensible records [CM94], indeed a record amounts to a partial function mapping
names (of components) to their values.
MLN captures smoothly most of the peculiar aspects of CMS and ν� (except freshness), while overcoming
some deficiencies and (unnecessary) complexities of these calculi.

• In CMS recursion is bundled in mixin, and removing it results in a very in-expressive calculus. On
the contrary, MLN is an interesting calculus even without recursion. The addition of recursion to MLN

follows mainstream approaches (either a fix-point combinator fix x.e or mutual recursive declarations
let ρ in e) and is orthogonal to the features for name management.

Moreover, in MLN one can express some form of dynamic linking, whereas in CMS operations on modules
corresponds to traditional static linking. In particular, it seems able to model some aspects of the
mechanism of Java class loaders [LB98].

• In ν� the typing rules for �-types are inspired by S4 modal logic and are quite restrictive, such restrictions
have no reason to exist in MLN . To describe interesting examples of meta-programming in ν� one has
to exploit features such as creation of fresh names and support polymorphism, while in MLN the same
examples can be described in a simpler way, by exploiting the name management facilities borrowed from
CMS.

∗Supported by EU project DART IST-2001-33477 and thematic network APPSEM II IST-2001-38957

1

2 A basic calculus with names: MLN

This section describes syntax and type system of MLN , by focusing on the novel features. The syntax is
abstracted over basic types b, term variables x ∈ X, resolver variables r ∈ R and symbolic names X ∈ N:

• τ ∈ T: : = b | τ1 → τ2 | [Σ|τ] types, where Σ ∈ Σ
∆= N

fin→ T is a signature {Xi: τi|i ∈ m}

• e ∈ E: : = x | λx.e | e1 e2 | er.X | e〈er〉 | box r.e terms

• er ∈ ER: : = r | ? | er{X: e} name resolvers.

We give an informal semantics of MLN . The type [Σ|τ] classifies fragments which produce a term of type τ
when linked with a resolver for Σ. The terms er.X and e〈er〉 use er to resolve name X and to link fragment
e. The term box r.e represents the fragment obtained by abstracting e w.r.t. r. The resolver ? cannot resolve
any name, while er{X: e} resolves X with e and delegates the resolution of other names to er.

References

[AZ99] Davide Ancona and Elena Zucca. A primitive calculus for module systems. In Proc. Int’l Conf.
Principles & Practice Declarative Programming, volume 1702 of LNCS, pages 62–79. Springer-Verlag,
1999.

[AZ02] D. Ancona and E. Zucca. A calculus of module systems. J. Funct. Programming, 12(2):91–132, March
2002. Extended version of [AZ99].

[Car97] Luca Cardelli. Program fragments, linking, and modularization. In Conf. Rec. POPL ’97: 24th ACM
Symp. Princ. of Prog. Langs., pages 266–277, 1997.

[CM94] L. Cardelli and J. C. Mitchell. Operations on records. In C. A. Gunter and J. C. Mitchell, editors,
Theoretical Aspects of Object-Oriented Programming: Types, Semantics, and Language Design, pages
295–350. The MIT Press, Cambridge, MA, 1994.

[Dav96] R. Davies. A temporal-logic approach to binding-time analysis. In the Symposium on Logic in
Computer Science (LICS ’96), pages 184–195, New Brunswick, 1996. IEEE Computer Society Press.

[DP01] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Journal of the ACM,
48(3):555–604, 2001.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice Hall, 1993.

[LB98] S. Liang and G. Bracha. Dynamic class loading in the Java Virtual Machine. In ACM Symp. on
Object-Oriented Programming: Systems, Languages and Applications 1998, volume 33(10) of Sigplan
Notices, pages 36–44. ACM Press, October 1998.

[Nan02] Aleksandar Nanevski. Meta-programming with names and necessity. In Proceedings of the Seventh
ACM SIGPLAN International Conference on Functional Programming (ICFP-02), ACM SIGPLAN
notices, New York, October 2002. ACM Press.

[She01] T. Sheard. Accomplishments and research challenges in meta-programming. In W. Taha, editor, Proc.
of the Int. Work. on Semantics, Applications, and Implementations of Program Generation (SAIG),
volume 2196 of LNCS, pages 2–46. Springer-Verlag, 2001.

[Tah99] W. Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon Graduate
Institute of Science and Technology, 1999.

2

