
A Fresh Calculus for Name Management
(joint work with D.Ancona)

Eugenio Moggi

moggi@disi.unige.it

DISI, Univ. of Genova

APPSEM-II Tallinn 14-16/04/2004 – p.1/7

Overall Aims

Core calculus MML
N

ν
supporting the use of symbolic names for

programming in-the-large, like Ancona and Zucca’s CMS [AZ02]
but mixins types are explained in terms of more elementary types

mixin[Σ1; Σ2] = extensible record[Σ1]→ fixed record[Σ2]

RISC versus CISC approach to design calculi

meta-programming, like Nanevski and Pfenning’s ν2 [Nan02,NP03]

capturing some aspects of Java multiple loaders [LY99]
loaders modeled by name resolvers

APPSEM-II Tallinn 14-16/04/2004 – p.2/7

Overall Aims

Core calculus MML
N

ν
supporting the use of symbolic names for

programming in-the-large, like Ancona and Zucca’s CMS [AZ02]

meta-programming, like Nanevski and Pfenning’s ν2 [Nan02,NP03]
but connection to S4 modal logic unnecessary/misleading,
the key point is to make name resolvers explicit
ν2 and MetaML (MMML) are different approaches to the same problem

combine (safely) execution of closed code, and
manipulation of open code (as in partial evaluation)

we would like to understand the trade-offs!

capturing some aspects of Java multiple loaders [LY99]
loaders modeled by name resolvers

APPSEM-II Tallinn 14-16/04/2004 – p.2/7

Overall Aims

Core calculus MML
N

ν
supporting the use of symbolic names for

programming in-the-large, like Ancona and Zucca’s CMS [AZ02]

meta-programming, like Nanevski and Pfenning’s ν2 [Nan02,NP03]

capturing some aspects of Java multiple loaders [LY99]
loaders modeled by name resolvers

APPSEM-II Tallinn 14-16/04/2004 – p.2/7

Syntax of MML
N

ν

e ∈ E: : = x | λx.e | e1 e2 | θ.X | b(r)e | e〈θ〉 |

ret e | do x← e1; e2 | νX.e | . . .

terms

θ ∈ ER: : = r | ? | θ{X: e} name resolvers

X ∈ N symbolic name, x ∈ X term variable, r ∈ R resolver variable

Commentary to BNF

name resolver) θ denotes partial function N
fin
→ E from names to terms

name resolution) θ.X term obtained when θ resolves X

fragment) b(r)e denotes function (N
fin
→ E)→ E from resolvers to terms

linking) e〈θ〉 term obtained when fragment e is linked to r

monadic metalanguage with operational Semantics a la [MF03] (CHAM like)

name resolvers θ as extensible records (this is what’s missing in ν2!)

name generation νX.e is a computational effect, as in FreshML [SGP03]

APPSEM-II Tallinn 14-16/04/2004 – p.3/7

Syntax of MML
N

ν

e ∈ E: : = x | λx.e | e1 e2 | θ.X | b(r)e | e〈θ〉 |

ret e | do x← e1; e2 | νX.e | . . .

terms

θ ∈ ER: : = r | ? | θ{X: e} name resolvers

monadic metalanguage with operational Semantics a la [MF03] (CHAM like)
simplification e > e′ confluent relation defined as compatible closure
computation Id > Id′ | done describing how configurations may evolve

it enforces simple equivalences, unlike operational semantics that bundle
computation with a deterministic simplification strategy.

name resolvers θ as extensible records (this is what’s missing in ν2!)

name generation νX.e is a computational effect, as in FreshML [SGP03]

APPSEM-II Tallinn 14-16/04/2004 – p.3/7

Syntax of MML
N

ν

e ∈ E: : = x | λx.e | e1 e2 | θ.X | b(r)e | e〈θ〉 |

ret e | do x← e1; e2 | νX.e | . . .

terms

θ ∈ ER: : = r | ? | θ{X: e} name resolvers

monadic metalanguage with operational Semantics a la [MF03] (CHAM like)

name resolvers θ as extensible records (this is what’s missing in ν2!)
resolvers are handled by simplification
calculus is expressive even with second-class resolvers

name generation νX.e is a computational effect, as in FreshML [SGP03]

APPSEM-II Tallinn 14-16/04/2004 – p.3/7

Syntax of MML
N

ν

e ∈ E: : = x | λx.e | e1 e2 | θ.X | b(r)e | e〈θ〉 |

ret e | do x← e1; e2 | νX.e | . . .

terms

θ ∈ ER: : = r | ? | θ{X: e} name resolvers

monadic metalanguage with operational Semantics a la [MF03] (CHAM like)

name resolvers θ as extensible records (this is what’s missing in ν2!)

name generation νX.e is a computational effect, as in FreshML [SGP03]
mathematical underpinning for freshness provided by FM-sets [GP99]
name generation essential to prevent accidental overriding of resolver
object language syntax modulo α-conversion (as in FreshML) not our aim!

but in MML
N

ν
names are pervasive: they occur in terms and in types

Equivariance (and finite support)!

APPSEM-II Tallinn 14-16/04/2004 – p.3/7

Operational Semantics of MML
N

ν : Simplification

e ∈ E: : = x | λx.e | e1 e2 | θ.X | b(r)e | e〈θ〉 | ret e | do x← e1; e2 | νX.e

θ ∈ ER: : = r | ? | θ{X: e}

beta) (λx.e2) e1 > e2[x: e1]

resolve) (θ{X: e}).X > e

delegate) (θ{X: e}).X ′ > θ.X ′ if X ′ 6= X

link) (b(r)e)〈θ〉 > e[r: θ]

APPSEM-II Tallinn 14-16/04/2004 – p.4/7

Operational Semantics of MML
N

ν : Computation

e ∈ E: : = x | λx.e | e1 e2 | θ.X | b(r)e | e〈θ〉 | ret e | do x← e1; e2 | νX.e

θ ∈ ER: : = r | ? | θ{X: e}

(X|e, E) configurations: current name space X ⊆fin N, program fragment e under

consideration, and its evaluation context E ∈ EC : := 2 | E[do x← 2; e]

Administrative steps
(A.0) (X|ret e, 2) > done

(A.1) (X|do x← e1; e2, E) > (X|e1, E[do x← 2; e2])

(A.2) (X|ret e1, E[do x← 2; e2]) > (X|e2[x: e1], E)

Name generation step
(ν) (X|νX.e, E) > (X , X|e, E) with X renamed to avoid clashes, i.e. X /∈ X

Addition of other computational effects

straightforward !
APPSEM-II Tallinn 14-16/04/2004 – p.4/7

Type System X ; Π; Γ ` e: τ and X ; Π; Γ ` θ: Σ

X ⊆fin N current name space (finite set of names)

τ ∈ TX : : = τ1 → τ2 | [Σ|τ] |Mτ | . . . X -type

Σ ∈ ΣX

∆
= X

fin
→ TX X -signature {Xi: τi|i ∈ m}

Π: R
fin
→ ΣX X -signature assignment for resolver variables

Γ: X
fin
→ TX X -type assignment for term variables

Contrary to record calculi X is finite (but may grow as computation progresses!)

APPSEM-II Tallinn 14-16/04/2004 – p.5/7

Type System X ; Π; Γ ` e: τ and X ; Π; Γ ` θ: Σ

X ⊆fin N current name space (finite set of names)

τ ∈ TX : : = τ1 → τ2 | [Σ|τ] |Mτ | . . . X -type

Σ ∈ ΣX

∆
= X

fin
→ TX X -signature {Xi: τi|i ∈ m}

Π: R
fin
→ ΣX X -signature assignment for resolver variables

Γ: X
fin
→ TX X -type assignment for term variables

Sample of Typing Rules

link

X ; Π; Γ ` e: [Σ|τ]

X ; Π; Γ ` θ: Σ′

X ; Π; Γ ` e〈θ〉: τ
Σ ⊆ Σ′ ν

X , X; Π; Γ ` e: Mτ

X ; Π; Γ ` νX.e: Mτ
X /∈ FV(Π, Γ, τ)

(link) allows limited form of width subtyping

` (X|e, E): τ ′ well-formed configuration

APPSEM-II Tallinn 14-16/04/2004 – p.5/7

Generative Programming in MML
N

ν

Require name generation, and type- and signature-polymorphism

component as fragment of type [Σ|τ]

Σ specifies the parameters needed for deployment

Generative programming support the dynamic manufacturing of customized
components from elementary (highly reusable) components

building block for generative programming are polymorphic functions of type

G: ∀p.[p, Σi|τi]→M [p, Σ|τ]

APPSEM-II Tallinn 14-16/04/2004 – p.6/7

Generative Programming in MML
N

ν

Require name generation, and type- and signature-polymorphism

component as fragment of type [Σ|τ]

Generative programming support the dynamic manufacturing of customized
components from elementary (highly reusable) components

building block for generative programming are polymorphic functions of type

G: ∀p.[p, Σi|τi]→M [p, Σ|τ]

result type is computational (generation may require computation)
signature variable p classifies information passed to arguments of G, but
not directly used/supplied by G.

APPSEM-II Tallinn 14-16/04/2004 – p.6/7

Comparison with MetaML (MMML)

MML
N

ν
appears more expressive (also more fine-grained/verbose), and avoids the

problems due to scope extrusion (more precise types).

open code type 〈τ〉 to correspond to [Σ|τ]
Σ specifies what names need to be resolved

λMx.e computation (in MMML) to generate code for a λ-abstraction, becomes

νX. do u← e[x: (b(r′)r′.X)]; ret (b(r)λx.u〈r{X: x}〉)

1. generate a fresh name X

2. compute fragment u by evaluating e with x replaced by b(r′)r′.X
resolver r′ for fresh name X (and possibly other names)

3. return fragment for a λ-abstraction
r does not have to resolve X, since u is linked to r′ = r{X: x}

APPSEM-II Tallinn 14-16/04/2004 – p.7/7

Comparison with MetaML (MMML)

MML
N

ν
appears more expressive (also more fine-grained/verbose), and avoids the

problems due to scope extrusion (more precise types).

open code type 〈τ〉 to correspond to [Σ|τ]
Σ specifies what names need to be resolved

λMx.e computation (in MMML) to generate code for a λ-abstraction, becomes

νX. do u← e[x: (b(r′)r′.X)]; ret (b(r)λx.u〈r{X: x}〉)

1. generate a fresh name X

2. compute fragment u by evaluating e with x replaced by b(r′)r′.X
resolver r′ for fresh name X (and possibly other names)

3. return fragment for a λ-abstraction
r does not have to resolve X, since u is linked to r′ = r{X: x}

The End!

APPSEM-II Tallinn 14-16/04/2004 – p.7/7

	Overall Aims
	Syntax of $MMLNnu $
	Operational Semantics of $MMLNnu $: onlySlide *{1}{Simplification}onlySlide *{2}{Computation}
	Type System $jdg {}{CX ;Pi ;G }{e :	 }$ and $jdg {}{CX ;Pi ;G }{er :Sg }$
	Generative Programming in $MMLNnu $
	Comparison with MetaML ($MMML $)

