A Fresh Calculus for Name Management
(Joint work with D.Ancona)

Eugenio Moggi

noggi @li si . unige.it

DISI, Univ. of Genova

APPSEM-II Tallinn 14-16/04/2004 — p.1/

Overall Aims

Core calculus MML]VV supporting the use of symbolic names for

® programming in-the-large, like Ancona and Zucca’'s CMS [AZ02]
but mixins types are explained in terms of more elementary types

mixin|[X;; >5] = extensible record[>;] — fixed record[>;]

RISC versus CISC approach to design calculi

APPSEM-II Tallinn 14-16/04/2004 — p.2/

Overall Aims

Core calculus MML]VV supporting the use of symbolic names for
® programming in-the-large, like Ancona and Zucca’'s CMS [AZ02]

® meta-programming, like Nanevski and Pfenning’s v~ [Nan02,NP03]

but connection to S4 modal logic unnecessary/misleading,
the key point is to make name resolvers explicit

o " and MetaML (MMML) are different approaches to the same problem
& combine (safely) execution of closed code, and
& manipulation of open code (as in partial evaluation)
we would like to understand the trade-offs!

APPSEM-II Tallinn 14-16/04/2004 — p.2/

Overall Aims

Core calculus MML]VV supporting the use of symbolic names for
® programming in-the-large, like Ancona and Zucca’'s CMS [AZ02]
® meta-programming, like Nanevski and Pfenning’s v~ [Nan02,NP03]

® capturing some aspects of Java multiple loaders [LY99]
» |oaders modeled by name resolvers

APPSEM-II Tallinn 14-16/04/2004 — p.2/

Syntax of MMLY

® | ccE:= x|dre|erey|0.X|b(r)e|eld)| |terms
rete|doxz «—eg;es | VX ...

®)cER::=r|7]|60{X:e} name resolvers

X € N symbolic name, x € X term variable, r € R resolver variable

Commentary to BNF

name resolver) 6 denotes partial function N " E from names to terms
name resolution) #.X term obtained when 6 resolves X

fragment) b(r)e denotes function (N ik E) — E from resolvers to terms
linking) e(0) term obtained when fragment e is linked to r

APPSEM-II Tallinn 14-16/04/2004 — p.3/

Syntax of MMLY

® | ccE:= x|dre|erey|0.X|b(r)e|eld)| |terms
rete |dox «—ej;ex | VX ...

®)cER::=r|7]|60{X:e} name resolvers

® monadic metalanguage with operational Semantics a la [MF03] (CHAM like)
» simplification e ——= ¢’ confluent relation defined as compatible closure
computation Id ——= Id’ | done describing how configurations may evolve

It enforces simple equivalences, unlike operational semantics that bundle
computation with a deterministic simplification strategy.

APPSEM-II Tallinn 14-16/04/2004 — p.3/

Syntax of MMLY

ecE:= x|Alrel|lerex|0.X|b(r)e|e(d)]| |terms
rete |dox «—ej;ex | VX ...

0 € ER::=1r|7|60{X:e} name resolvers

monadic metalanguage with operational Semantics a la [MF03] (CHAM like)

name resolvers 6 as extensible records (this is what's missing in v-!)
resolvers are handled by simplification
calculus is expressive even with second-class resolvers

APPSEM-II Tallinn 14-16/04/2004 — p.3/

°

e o0 o

Syntax of MMLY

ecE:= x|Alrel|lerex|0.X|b(r)e|e(d)]| |terms

rete | dox «—eg;eq |vXe]| ...

0 € ER::=1r|7|60{X:e} name resolvers

monadic metalanguage with operational Semantics a la [MF03] (CHAM like)

name resolvers 6 as extensible records (this is what's missing in v-!)

name generation vX.e iIs a computational effect, as in FreshML [SGPO03]

>

o
»
»

mathematical underpinning for freshness provided by FM-sets [GP99]
name generation essential to prevent accidental overriding of resolver
object language syntax modulo «-conversion (as in FreshML) not our aim!

but in MML,]/V names are pervasive: they occur in terms and in types

Equivariance (and finite support)!

APPSEM-II Tallinn 14-16/04/2004 — p.3/

Operational Semantics of MMLY': Simplification

® | cckE:= x|dre|erey|0.X|b(r)e|eld) |rete|dox «— er;es | vX.e

® JcER::=7r|7]|0{X:e}

beta) (Azx.ez) eg — es|r:eq]

resolve) (0{X:e}).X —> e

delegate) (0{X:e}). X' —> 0.X"If X' # X
link) (b(r)e)(d) — e[r: 6]

APPSEM-II Tallinn 14-16/04/2004 — p.4/

Operational Semantics of MMLY': Computation

® | ccE:= x|Arel|lere|0.X|b(r)e|e(d) |rete|dox«—ej;es | vX.e

® JcER::=7r|7]|0{X:e}

Xle, F/) configurations: current name space X Cg,, N, program fragment e under
fi

consideration, and its evaluation context | £ € EC::=0 | F[do x « ;€]

® Administrative steps
(A.0) (X|rete,d) —— done
(A1) (X|do x < eq;eq, F) > (Xle1, E|dO x « O;es))
(A.2) (Xlretey, E[do x « O;es]) —> (Xleg|z:e1],)
® Name generation step
(v) (X|vX.e, E) —> (X, X|e, EY) with X renamed to avoid clashes, i.e. X ¢ X

Addition of other computational effects
straightforward!

APPSEM-II Tallinn 14-16/04/2004 — p.4/

9

o

9

Type System X;II;T' - e:7and X1 T F 6: 2

X Csn N current name space (finite set of names)

TETxyii=1 - | [X7] | M1 | ...

X -type

SEeEYr 2 X ki Ty X-signature { X;: 7;|¢ € m}

. R % 2y AX-signature assignment for resolver variables

. x % T X-type assignment for term variables

Contrary to record calculi X is finite (but may grow as computation progresses!)

APPSEM-II Tallinn 14-16/04/2004 — p.5/

Type System X;II;T' - e:7and X1 T F 6: 2

® Y Cg, N current name space (finite set of names)

® recTyii=m -l X |Mr|...|X-type

® YTeyr 2 ki Ty X-signature { X;: 7;|¢ € m}
® R 2y AX-signature assignment for resolver variables

o I:x T X-type assignment for term variables

Sample of Typing Rules

X 1L T e [X]7]

X:IL;TF 6: % X, X:ILT e Mt
link YCY v X ¢ FV(LT, 7)
X ILT Fe(d): X:ILTHvX.e: Mt

® (link) allows limited form of width subtyping
® + (Xl|e, E): 7" well-formed configuration

APPSEM-II Tallinn 14-16/04/2004 — p.5/

Generative Programming in MMLY

Require name generation, and type- and signhature-polymorphism
® component as fragment of type [X|7]

> specifies the parameters needed for deployment

APPSEM-II Tallinn 14-16/04/2004 — p.6/

Generative Programming in MMLY

Require name generation, and type- and signhature-polymorphism
® component as fragment of type [X|7]

® Generative programming support the dynamic manufacturing of customized
components from elementary (highly reusable) components

® building block for generative programming are polymorphic functions of type

& result type is computational (generation may require computation)

signature variable p classifies information passed to arguments of (G, but
not directly used/supplied by G.

APPSEM-II Tallinn 14-16/04/2004 — p.6/

Comparison with MetaML (MMML)

MML]VV appears more expressive (also more fine-grained/verbose), and avoids the
problems due to scope extrusion (more precise types).

® open code type (1) to correspond to [X|7]
Y. specifies what names need to be resolved

®)\ ,,x.e computation (in MMML) to generate code for a A\-abstraction, becomes
vX. dowu«— ez (b(r')r.X)]; ret(b(r) z.u(r{X:z}))

1. generate a fresh name X

2. compute fragment u by evaluating e with = replaced by b(r")r’. X
resolver r’ for fresh name X (and possibly other names)

3. return fragment for a A-abstraction
r does not have to resolve X, since u is linked to ' = r{X: z}

APPSEM-II Tallinn 14-16/04/2004 — p.7/

Comparison with MetaML (MMML)

MML]VV appears more expressive (also more fine-grained/verbose), and avoids the
problems due to scope extrusion (more precise types).

® open code type (1) to correspond to [X|7]
Y. specifies what names need to be resolved

®)\ ,,x.e computation (in MMML) to generate code for a A\-abstraction, becomes
vX. dowu«— ez (b(r')r.X)]; ret(b(r) z.u(r{X:z}))

1. generate a fresh name X

2. compute fragment u by evaluating e with = replaced by b(r")r’. X
resolver r’ for fresh name X (and possibly other names)

3. return fragment for a A-abstraction
r does not have to resolve X, since u is linked to ' = r{X: z}

The End!

APPSEM-II Tallinn 14-16/04/2004 — p.7/

	Overall Aims
	Syntax of $MMLNnu $
	Operational Semantics of $MMLNnu $: onlySlide *{1}{Simplification}onlySlide *{2}{Computation}
	Type System $jdg {}{CX ;Pi ;G }{e :	 }$ and $jdg {}{CX ;Pi ;G }{er :Sg }$
	Generative Programming in $MMLNnu $
	Comparison with MetaML ($MMML $)

