A Fresh Calculus for Name Management (joint work with D.Ancona)

Eugenio Moggi

moggi@disi.unige.it

DISI, Univ. of Genova

Overall Aims

Core calculus MML_{ν}^{N} supporting the use of symbolic names for

- programming in-the-large, like Ancona and Zucca's CMS [AZ02]
 - but mixins types are explained in terms of more elementary types

 $\mathsf{mixin}[\Sigma_1; \Sigma_2] = \mathsf{extensible} \ \mathsf{record}[\Sigma_1] \to \mathsf{fixed} \ \mathsf{record}[\Sigma_2]$

RISC versus **CISC** approach to design calculi

Overall Aims

Core calculus MML_{ν}^{N} supporting the use of symbolic names for

- programming in-the-large, like Ancona and Zucca's CMS [AZ02]
- **•** meta-programming, like Nanevski and Pfenning's ν^{\Box} [Nan02,NP03]
 - but connection to S4 modal logic unnecessary/misleading, the key point is to make name resolvers explicit
 - ν^{\Box} and MetaML (MMML) are different approaches to the same problem
 - combine (safely) execution of closed code, and
 - manipulation of open code (as in partial evaluation) we would like to understand the trade-offs!

Overall Aims

Core calculus MML_{ν}^{N} supporting the use of symbolic names for

- programming in-the-large, like Ancona and Zucca's CMS [AZ02]
- **•** meta-programming, like Nanevski and Pfenning's ν^{\Box} [Nan02,NP03]
- capturing some aspects of Java multiple loaders [LY99]
 - Ioaders modeled by name resolvers

Syntax of MML^N_{ν}

$$e \in \mathsf{E} ::= x \mid \lambda x.e \mid e_1 \mid e_2 \mid \theta.X \mid \mathbf{b}(r)e \mid e\langle \theta \rangle \mid$$
 terms
ret $e \mid \mathbf{do} \mid x \leftarrow e_1; e_2 \mid \nu X.e \mid \dots$

● $θ \in ER$: := $r | ? | θ{X: e}$ name resolvers

 $X \in N$ symbolic name, $x \in X$ term variable, $r \in R$ resolver variable

Commentary to BNF

name resolver) θ denotes partial function N $\xrightarrow{fin} \in$ from names to terms name resolution) $\theta.X$ term obtained when θ resolves X fragment) b(r)e denotes function (N $\xrightarrow{fin} \in$ E) \rightarrow E from resolvers to terms linking) $e\langle\theta\rangle$ term obtained when fragment e is linked to r Syntax of MML_{ν}^N

$$e \in \mathsf{E} ::= x \mid \lambda x.e \mid e_1 \mid e_2 \mid \theta.X \mid \mathbf{b}(r)e \mid e\langle \theta \rangle \mid \text{ terms}$$
$$ret \mid do \ x \leftarrow e_1; e_2 \mid \nu X.e \mid \dots$$

• $\theta \in \mathsf{ER}$: = $r \mid ? \mid \theta \{ X : e \}$ name resolvers

monadic metalanguage with operational Semantics a la [MF03] (CHAM like)

- simplification $e \longrightarrow e'$ confluent relation defined as compatible closure
- computation $Id \mapsto Id' \mid$ done describing how configurations may evolve

it enforces simple equivalences, unlike operational semantics that bundle computation with a deterministic simplification strategy.

Syntax of MML_{ν}^N

e

$$\in \mathsf{E} ::= \begin{array}{ccc} x \mid \lambda x.e \mid e_1 \mid e_2 \mid \theta.X \mid \mathbf{b}(r)e \mid e\langle \theta \rangle \mid & \text{terms} \\ \hline ret \mid \mathbf{c} \mid \mathbf{c} \mid \mathbf{c} \mid \mathbf{c} \mid e_1; e_2 \mid \nu X.e \mid \dots & \end{array}$$

- $\theta \in \mathsf{ER}$: = $r \mid ? \mid \theta \{ X : e \}$ name resolvers
- monadic metalanguage with operational Semantics a la [MF03] (CHAM like)
- **name resolvers** θ as extensible records (this is what's missing in ν^{\Box} !)
 - resolvers are handled by simplification
 - calculus is *expressive* even with *second-class* resolvers

Syntax of MML_{ν}^N

$$e \in \mathsf{E} ::= x \mid \lambda x.e \mid e_1 \mid e_2 \mid \theta.X \mid \mathbf{b}(r)e \mid e\langle \theta \rangle \mid \text{ terms}$$
$$ret \mid do x \leftarrow e_1; e_2 \mid \nu X.e \mid \dots$$

- $\theta \in \mathsf{ER}$: = $r \mid ? \mid \theta \{ X : e \}$ name resolvers
- monadic metalanguage with operational Semantics a la [MF03] (CHAM like)
- **p** name resolvers θ as extensible records (this is what's missing in ν^{\Box} !)
- **name generation** $\nu X.e$ is a computational effect, as in FreshML [SGP03]
 - mathematical underpinning for freshness provided by FM-sets [GP99]
 - name generation essential to prevent accidental overriding of resolver
 - object language syntax modulo α -conversion (as in FreshML) not our aim!
 - but in MML_{ν}^{N} names are pervasive: they occur in terms and in types

Equivariance (and finite support)!

Operational Semantics of MML $_{\nu}^{N}$: **Simplification**

$$e \in \mathsf{E} := x \mid \lambda x.e \mid e_1 \mid e_2 \mid \theta X \mid \mathbf{b}(r)e \mid e\langle \theta \rangle \mid \mathbf{ret} \mid \mathbf{do} x \leftarrow e_1; e_2 \mid \nu X.e$$

$$\theta \in \mathsf{ER} ::= r \mid ? \mid \theta\{X:e\}$$

beta) $(\lambda x.e_2) e_1 \longrightarrow e_2[x:e_1]$ resolve) $(\theta\{X:e\}).X \longrightarrow e$ delegate) $(\theta\{X:e\}).X' \longrightarrow \theta.X'$ if $X' \neq X$ link) $(b(r)e)\langle\theta\rangle \longrightarrow e[r:\theta]$

Operational Semantics of MML_{ν}^{N} : **Computation**

 $e \in \mathsf{E} ::= x \mid \lambda x.e \mid e_1 \mid e_2 \mid \theta X \mid \mathbf{b}(r)e \mid e\langle \theta \rangle \mid \mathbf{ret} \mid \mathbf{do} x \leftarrow e_1; e_2 \mid \nu X.e$

$$\theta \in \mathsf{ER} ::= r \mid ? \mid \theta\{X:e\}$$

 $(\mathcal{X}|e, E)$ configurations: current name space $\mathcal{X} \subseteq_{fin} N$, program fragment e under consideration, and its evaluation context $E \in EC ::= \Box | E[do x \leftarrow \Box; e]$

Administrative steps (A.0) (X | ret e, □) → done (A.1) (X | do x ← e_1; e_2, E) → (X | e_1, E[do x ← □; e_2]) (A.2) (X | ret e_1, E[do x ← □; e_2]) → (X | e_2[x: e_1], E)

Name generation step

(ν) ($\mathcal{X}|\nu X.e, E$) \longmapsto ($\mathcal{X}, X|e, E$) with X renamed to avoid clashes, i.e. $X \notin \mathcal{X}$

Addition of other computational effects straightforward!

Type System $\mathcal{X}; \Pi; \Gamma \vdash e: \tau$ and $\mathcal{X}; \Pi; \Gamma \vdash \theta: \Sigma$

 $\mathcal{X} \subseteq_{fin} \mathbb{N}$ current name space (finite set of names)

- $\Sigma \in \Sigma_{\mathcal{X}} \stackrel{\Delta}{=} \mathcal{X} \stackrel{fin}{\to} \mathsf{T}_{\mathcal{X}} \stackrel{\mathcal{X}}{\to} \mathsf{signature} \{X_i : \tau_i | i \in m\}$
- $\Pi: \mathsf{R} \xrightarrow{fin} \Sigma_{\mathcal{X}} \mathcal{X}$ -signature assignment for resolver variables
- $\ \, \boldsymbol{\Gamma}: \mathsf{X} \xrightarrow{fin} \mathsf{T}_{\mathcal{X}} \xrightarrow{\mathcal{X}} \mathsf{-type} \text{ assignment for term variables}$

Contrary to record calculi \mathcal{X} is finite (but may grow as computation progresses!)

Type System $\mathcal{X}; \Pi; \Gamma \vdash e: \tau$ and $\mathcal{X}; \Pi; \Gamma \vdash \theta: \Sigma$

 $\mathcal{X} \subseteq_{fin} \mathsf{N}$ current name space (finite set of names)

 $\blacksquare \Pi: \mathsf{R} \xrightarrow{fin} \Sigma_{\mathcal{X}} \ \mathcal{X} \text{-signature assignment for resolver variables}$

Sample of Typing Rules

$$\frac{\mathcal{X};\Pi;\Gamma\vdash e:[\Sigma|\tau]}{\mathcal{X};\Pi;\Gamma\vdash\theta:\Sigma'} \sum \Sigma \subseteq \Sigma' \qquad \nu \frac{\mathcal{X},\mathbf{X};\Pi;\Gamma\vdash e:M\tau}{\mathcal{X};\Pi;\Gamma\vdash e\langle\theta\rangle:\tau} X \notin \mathrm{FV}(\Pi,\Gamma,\tau)$$

- (link) allows limited form of width subtyping
- ▶ $\vdash (\mathcal{X}|e, E): \tau'$ well-formed configuration

Generative Programming in MML_{ν}^N

Require name generation, and type- and *signature*-polymorphism

- component as fragment of type $[\Sigma|\tau]$
 - Σ specifies the parameters needed for deployment

Generative Programming in MML_{ν}^N

Require name generation, and type- and *signature*-polymorphism

- component as fragment of type $[\Sigma | \tau]$
- Generative programming support the dynamic manufacturing of customized components from elementary (highly reusable) components
- building block for generative programming are polymorphic functions of type

 $G: \forall p.[p, \Sigma_i | \tau_i] \to \boldsymbol{M}[p, \Sigma | \tau]$

- result type is computational (generation may require computation)
- signature variable p classifies information passed to arguments of G, but not directly used/supplied by G.

Comparison with MetaML (MMML)

 MML_{ν}^{N} appears more expressive (also more fine-grained/verbose), and avoids the problems due to *scope extrusion* (more precise types).

- open code type $\langle \tau \rangle$ to correspond to $[\Sigma | \tau]$ Σ specifies what names need to be resolved
- $\lambda_M x.e$ computation (in MMML) to generate code for a λ -abstraction, becomes

 $\nu X.$ do $u \leftarrow e[x: (b(r')r'.X)];$ ret $(b(r)\lambda x.u\langle r\{X:x\}\rangle)$

- 1. generate a fresh name X
- 2. compute fragment u by evaluating e with x replaced by b(r')r'.X resolver r' for fresh name X (and possibly other names)
- 3. return fragment for a λ -abstraction r does not have to resolve X, since u is linked to $r' = r\{X: x\}$

Comparison with MetaML (MMML)

 MML_{ν}^{N} appears more expressive (also more fine-grained/verbose), and avoids the problems due to *scope extrusion* (more precise types).

- *open code* type $\langle \tau \rangle$ to correspond to $[\Sigma | \tau]$ Σ specifies what names need to be resolved
- \square $\lambda_M x.e$ computation (in MMML) to generate code for a λ -abstraction, becomes

 $\nu X.$ do $u \leftarrow e[x: (b(r')r'.X)];$ ret $(b(r)\lambda x.u\langle r\{X:x\}\rangle)$

- 1. generate a fresh name X
- 2. compute fragment u by evaluating e with x replaced by b(r')r'.X resolver r' for fresh name X (and possibly other names)
- 3. return fragment for a λ -abstraction r does not have to resolve X, since u is linked to $r' = r\{X: x\}$

The End!