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Abstract

We introduce Xdπ, a peer-to-peer model for
reasoning about the dynamic behaviour of web
data. It is based on an idealised model of semi-
structured data, and an extension of the π-
calculus with process mobility and with an op-
eration for interacting with data. Our model
can be used to reason about behaviour found
in, for example, dynamic web page program-
ming, applet interaction, and service orches-
tration. We study behavioural equivalences
for Xdπ, motivated by examples.

1 Introduction

Web data, such as XML, plays a fundamental rôle
in the exchange of information between globally dis-
tributed applications. Applications naturally fall into
some sort of mediator approach: systems are divided
into peers, with mechanisms based on XML for inter-
action between peers. The development of analysis
techniques, languages and tools for web data is by no
means straightforward. In particular, although web
services allow for interaction between processes and
data, direct interaction between processes is not well-
supported.

Peer-to-peer data management systems are decen-
tralised distributed systems where each component of-
fers the same set of basic functionalities and acts both
as a producer and as a consumer of information. We
model systems where each peer consists of an XML
data repository and a working space where processes
are allowed to run. Our processes can be regarded as
agents with a simple set of functionalities; they com-
municate with each other, query and update the lo-
cal repository, and migrate to other peers to continue
execution. Process definitions can be included in doc-
uments1, and can be selected for execution by other
processes. These functionalities are enough to express
most of the dynamic behaviour found in web data,

∗This paper is a revised version of [14]
1We regard process definitions in documents as an atomic

piece of data, and we do not consider queries which modify such
definitions.

such as web services, distributed (and replicated) doc-
uments [2], distributed query patterns [27], hyperlinks,
forms, and scripting.

In this paper we introduce the Xdπ-calculus, which
provides a formal semantics for the systems described
above. It is based on a network of locations (peers)
containing a (semi-structured) data model, and π-like
processes [23, 28, 19] for modeling process interaction,
process migration, and interaction with data. The
data model consists of unordered labelled trees, with
embedded processes for querying and updating such
data, and explicit pointers for referring to other parts
of the network: for example, a document with a hyper-
link referring to another site and a light-weight trusted
process for retrieving information associated with the
link. The idea of embedding processes (scripts) in web
data is not new: examples include Javascript, Smart-
Tags and calls to web services. However, web appli-
cations do not in general provide direct communica-
tion between active processes, and process coordina-
tion therefore requires specialised orchestration tools.
In contrast, distributed process interaction (commu-
nication and co-ordination) is central to our model,
and is inspired by the current research on distributed
process calculi.

We study behavioural equivalences for Xdπ. In par-
ticular, we define when two processes are equivalent in
such a way that when the processes are put in the
same position in a network, the resulting networks are
equivalent. We do this in several stages. First, we de-
fine what it means for two Xdπ-networks to be equiv-
alent. Second, we indicate how to translate Xdπ into
a simpler calculus (Xπ2), where the location struc-
ture has been pushed inside the data and processes.
This translation technique, first proposed in [9], en-
ables us to separate reasoning about processes from
reasoning about data and networks. Finally, we define
process equivalence and study examples. In particular,
we sketch a labelled-bisimulation-based proof method
for process equivalence. Full details on the translation
and equivalences can be found in [15].

A Simple Example. We use the hyperlink exam-
ple as a simple example to illustrate our ideas. Con-
sider two locations (machines identified by their IP



addresses) l and m. Location l contains a hyperlink at
p referring to data identified by path q at location m:

l

RQ

m

q
p

In the working space of location l, the process Q ac-
tivates the process embedded in the hyperlink, which
then fires a request to m to copy the tree identified by
path q and write the result to p at l.

The hyperlink at l, written in both XML notation
(LHS) and ambient notation used in this paper (RHS),
is:

    <To>
<Link>

        m:q
    </To>

    </Code>

    <Code>
        P

</Link>

Link

CodeTo

2P

Link[ To[ @m:q ] | Code[ 2P ] ]

@m:q

This hyperlink consists of two parts: an external
pointer @m:q, and a scripted process 2P which pro-
vides the mechanism to fetch the subtree q from m.
Process P has the form

P = readp/Link/To(@x:y).load〈x, y, p〉
The read command reads the pointer reference from
position p/Link/To in the tree, substitutes the values
m and q for the parameters x and y in the continuation
and evolves to the output process load〈m, q, p〉, which
records the target location m, the target path q and the
position p where the result tree will go. This output
process calls a corresponding input process inside Q,
using π-calculus interaction. The specification of Q
has the form:

Qs = !load(x, y, z).go x. copyy(X).go l.pastez〈X〉
The replication ! denotes that the input process can be
used as many times as requested. The interaction be-
tween the load and load replaces the parameters x, y, z
with the values m, q, p in the continuation. The pro-
cess then goes to m, copies the tree at q, comes back
to l, and pastes the tree to p.

The process Qs is just a specification. We refine this
specification by having a process Q (acting as a service
call), which sends a request to location m for the tree
at q, and a process R (the service definition) which
grants the request. Processes Q and R are defined by

Q =!load(x, y, z).(νc)(go x.get〈y, l, c〉 | c(X).pastez〈X〉)

R =!get(y, x, w).copyy(X).go x.w〈X〉

Once process Q receives parameters from load, it splits
into two parts: the process that sends the output mes-
sage get〈q, l, c〉 to m, with information about the par-
ticular target path q, the return location l and a pri-
vate channel name c (created using the π-calculus re-
striction operator ν), and the process c(X).pastep〈X〉
waiting to paste the result delivered via the unique
channel c. Process R receives the parameters from get
and returns the tree to the unique channel c at l. Us-
ing our definition of process equivalence, we show that
Q does indeed have the same intended behaviour as
its specification Qs, and that the processes are inter-
changeable independently from the context where they
are installed.

Related Work. Our work is related to the Active
XML approach to data integration developed indepen-
dently by Abiteboul et al. [4]. They introduce an ar-
chitecture which is a peer-to-peer system where each
peer contains a data model very similar to ours (but
where only service calls can be scripted in documents),
and a working space where only web service definitions
are allowed. Moreover Active XML service definitions
cannot be moved around. In this respect our approach
is more flexible: for example, we can define an auditing
process for assessing a university course—it goes to a
government site, selects the assessment criteria appro-
priate for the particular course under consideration,
then moves this information (web service definition)
to the university to make the assessment.

Several distributed query languages, such as [25, 21,
8], extend traditional query languages with facilities
for distribution awareness. Our approach is closest
to the one of Sahuguet and Tannen [27], who intro-
duce the ubQL query language based on streams for
exchanging large amounts of distributed data, partly
motivated by ideas from the π-calculus. There has
been much study of data models for the web in the
XML, database and process algebra communities. Our
ideas have evolved from those found in [3] and [10].
Our process-algebra techniques have most in common
with [20, 9, 18]. Process calculi have also been used for
example to study security properties of web services
[17], reason about mobile resources [16], and in [26]
to sketch a distributed query language. Bierman and
Sewell [7] have recently extended a small functional
language for XML with π-calculus-based concurrency
in order to program Home Area Networks devices.

Our proof technique is based on higher-order bisim-
ulation for process languages, a technique studied for
example in [30, 12, 29]

Our work is the first attempt to integrate the study
of mobile processes and semi-structured data for Web-
based data-sharing applications, and is characterised
by its emphasis on dynamic data.



2 A Model for Dynamic Web Data

We model a peer-to-peer system as a sets of inter-
connected locations (networks), where the content of
each location consists of an abstraction of a XML data
repository (the tree) and a term representing both the
services provided by the peer and the agents in execu-
tion on behalf of other peers (the process). Processes
can query and update the local data, communicate
with each other through named channels (public or
private), and migrate to other peers. Process defini-
tions can be included in documents and can be selected
for execution by other processes.

Trees. Our data model extends the unordered la-
belled rooted trees of [10], with leaves which can ei-
ther be scripted processes or pointers to data. We
use the following constructs: edge labels denoted by
a, b, c ∈ A, path expressions denoted by p, q ∈ E used
to identify specific subtrees, and locations of the form
ª, l,m ∈ L, where the ‘self’ location ª refers to the
enclosing location. The set of data trees, denoted T ,
is given by

T ::= 0 | T |T | a[ T ] | a[ 2P ] | a[ @l:p ]

Tree 0 denotes a rooted tree with no content. Tree
T1 |T2 denotes the composition of T1 and T2, which
simply joins the roots. A tree of the form a[ ... ] de-
notes a tree with a single branch labelled a which can
have three types of content: a subtree T ; a scripted
process 2P which is a static process awaiting a com-
mand to run; a pointer @l:p which denotes a pointer to
a set of subtrees identified by path expression p in the
tree at location l. Processes and path expressions are
described below. The structural congruence for trees
states that trees are unordered, and scripted processes
are identified up to the structural congruence for pro-
cesses (see Table 7 in the Appendix).

Processes. Our processes are based on π-processes
extended with an explicit migration primitive between
locations, and an operation for interacting directly
with data. The π-processes describe the movement of
values between channels. Generic variables are x, y, z,
channel names or channel variables are a, b, c and val-
ues, ranged over by u, v, w, are

u ::= T | c | l | p | 2P | x

We use the notation z̃ and ṽ to denote vectors of vari-
ables and values respectively. Identifiers U, V range
over scripted processes, pointers and trees. The set of
processes, denoted P, is given by

P ::= 0 | P |P | (νc)P | b〈ṽ〉 | b(z̃).P | !b(z̃).P
| go l.P | updatep(χ, V ).P

The processes in the first line of the grammar are
constructs arising from the π-calculus: the nil process

0, the composition of processes P1 |P2, the restriction
(νc)P which restricts (binds) channel name c in pro-
cess P , the output process b〈ṽ〉 which denotes a vector
of values ṽ waiting to be sent via channel b, the input
process b(z̃).P which is waiting to receive values from
an output process via channel b to replace the vector of
distinct, bound variables z̃ in P , and replicated input
!b(z̃).P which spawns off a copy of b(z̃).P each time
one is requested. We assume a simple sorting disci-
pline, to ensure that the number of values sent along a
channel matches the number of variables expected to
receive those values. Channel names are partitioned
into public and session channels, denoted CP and CS

respectively. Public channels denote those channels
that are intended to have the same meaning at each
location, such as finger, and cannot be restricted. Ses-
sion channels are used for process interaction, and are
not free in the scripted processes occurring in data.

The migration primitive go l.P is common in cal-
culi for describing distributed systems; see for exam-
ple [18]. It enables a process to go to l and become P .
An alternative choice would have been to incorporate
the location information inside the other process com-
mands: for example using l·b〈ṽ〉 to denote a process
which goes to l and interacts via channel b.

The generic update command updatep(χ,U).P is
used to interact with the data trees. The pattern χ
has the form

χ ::= X | @x:y | 2X,

where X denotes a tree or process variable. Here U
can contain variables and must have the same sort as
χ. The variables free in χ are bound in U and P . The
update command finds all the values Ui given by the
path p, pattern-matches these values with χ to obtain
the substitution σi when it exists. For each success-
ful pattern-matching, it replaces the Ui with Uσi and
starts Pσi in parallel. Simple commands can be de-
rived from this update command, including standard
copyp, cutp and pastep commands. We can also derive
a runp command, which prescribes, for all scripted pro-
cesses 2Pi found at the end of path p, to run Pi in the
workspace.

The structural congruence on processes is similar to
that given for the π-calculus, and is given in the Ap-
pendix in Table 7. Notice that it depends on the struc-
tural congruence for trees, since trees can be passed as
values.

Networks. We model networks as a composition of
unique locations, where each location contains a tree
and a set of processes. The set of networks, denoted
N , is given by

N ::= 0 | N |N | l [T ‖P ] | (νc)N | l〈P 〉
The location l [T ‖P ] denotes location l containing
tree T and process P . It is well-formed when the



tree and process are closed, and the tree contains
no free session channels. The network composition
N1 |N2 is partial in that the location names associated
with N1 and N2 must be disjoint. Communication
between locations is modelled by process migration,
which we represent explicitly: the process l〈P 〉 repre-
sents a (higher-order) migration message addressed to
l and containing process P , which has left its originat-
ing location. In the introduction, we saw that a session
channel can be shared between processes at different
locations. We must therefore lift the restriction to the
network level using (νc)N . Structural congruence for
networks is defined in Table 7 in the Appendix, and is
analogous to that given for processes.

Path Expressions. In the examples of this paper, we
just use a very simple subset of XPath expressions [22].
In our examples, “/” denotes path composition and
“.”, which can appear only inside trees, denotes the
path to its enclosing node.

Our semantic model is robust with respect to any
choice of mechanism which, given some expression p,
identifies a set of nodes in a tree T . We let p(T ) denote
the tree T where the nodes identified by p are selected,
and we represent a selected node by underlining its
contents. For example the selected subtrees below are
S′ and T ′:

T = a[ a[ S ] | b[ S′ ] | c[ T ′ ] ]

A path expression such as //a might select nested sub-
trees. We give an example:

//a(T ) = a[ a[ S ] | b[ S′ ] | c[ T ′ ] ]

Reduction and Update Semantics. The reduc-
tion relation ↘ describes the movement of processes
across locations, the interaction between processes and
processes, and the interaction between processes and
data. Reduction is closed under network composition,
restriction and structural congruence, and it relies on
the updating function Ãp reported in Table 2. The
reduction axioms are given in Table 1.

The rules for process movement between locations
are inspired by [5]. Rule (Exit) always allows a process
go l.P to leave its enclosing location. At the moment,
rule (Enter) permits the code of P to be installed at
l provided that location l exists2. In future work, we
intend to associate some security check to this opera-
tion. Process interaction (rules (Com) and (!Com)) is in-
spired by π-calculus interaction. If one process wishes
to output on a channel, and another wishes to input
on the same channel, then they can react together and
transmit some values as part of that reaction.

2This feature is peculiar to our calculus, as opposed to e.g.
[18], where the existence of the location to be entered is not
a precondition to migration. Our choice makes the study of
equivalences non-trivial.

The generic (Update) rule provides interaction be-
tween processes and data. Using path p it selects for
update some subtrees in T , denoted by p(T ), and then
applies the updating function Ãp to p(T ) in order to
obtain the new tree T ′ and the continuation process
P ′. Given a subtree selected by p, the function Ãp
pattern matches the subtree with pattern χ to obtain
substitution σ (when it exists), updates the subtree
with V σ, and creates process Pσ. A formal definition
of Ãp , parameterised by p, l, χ, V, P , is given in Ta-
ble 2. Rule (Up) deserves some explanation. It matches
U with χ, to obtain substitution σ; when σ exists, it
continues updating V σ, and when we obtain some sub-
tree V ′ along with a process R, it replaces U with V ′

and it returns R in parallel with Pσ{l/ ª, p/.}, where
any reference to the current location and path is sub-
stituted with the actual values l and p3.

Derived Commands. Throughout our examples, we
use the derived commands given in Table 3. In par-
ticular note that the definition of run is the only case
where we allow the instantiation of a process variable.

Example 2.1 The following reaction illustrates the
cut command:

l [ c[ a[ T ] | a[ T ′ ] | b[ S ] ]‖ cutc/a(X).P ]

↘ l [ c[ a[ 0 ] | a[ 0 ] | b[ S ] ]‖P{T/X} |P{T ′/X} ]
The cut operation cuts the two subtrees T and T ′ iden-
tified by the path expression c/a and spawns one copy
of P for each subtree.

Now we give an example to illustrate run and the
substitution of local references:

S = a[ b[ 2go m.go ª .Q ] | b[ 2cut./../c(X).P ] ]

l [S ‖ runa/b ]↘ l [S ‖ go m.go l.Q | cuta/b/../c(X).P ]

The data S is not affected by the run operation, which
has the effect of spawning the two processes found by
path a/b. Note how the local path ./../c has been re-
solved into the completed path a/b/../c, and ª has
been substituted by l.

3 Dynamic Web Data at Work

We give some examples of dynamic web data modelled
in Xdπ.

3The ability to select nested nodes introduces a difference
between updating the tree in a top-down rather than bottom-up
order. In particular the resulting tree is the same, but a different
set of processes P is collected. We chose the top-down approach
because is bears a closer correspondence with intuition: a copy
of P will be created for each update still visible in the final tree
outcome. For example, if Q = update//(X, 0).P

(top-down) l [ a[ b[T ] ]‖Q ]↘ l [ a[ 0 ]‖P{b[T ]/X} ]
(bottom-up) l [ a[ b[T ] ]‖Q ]↘ l [ a[ 0 ]‖P{b[ 0 ]/X} |P{T/X} ]
because first a[ b[T ] ] becomes a[ b[ 0 ] ] giving P{T/X}, and
then a[ b[ 0 ] ] becomes a[ 0 ], giving P{b[ 0 ]/X}.



(Exit) m [T ‖Q | go l.P ] ↘ m [T ‖Q ] | l〈P 〉
(Enter) l [T ‖Q ] | l〈P 〉 ↘ l [T ‖Q |P ]

(Com) l [T ‖ c〈ṽ〉 | c(z̃).P |Q ] ↘ l [T ‖P{ṽ/z̃} |Q ]

(Com!) l [T ‖ c〈ṽ〉 | !c(z̃).P |Q ] ↘ l [T ‖ !c(z̃).P |P{ṽ/x̃} |Q ]

(Update) l [T ‖ updatep(χ, V ).P |Q ]↘ l [T ′ ‖P ′ |Q ] where p(T )Ãp (p,l,χ,V,P )T
′, P ′

Table 1: Reduction Semantics

(Zero) 0 ÃpΘ0, 0 (Link) @l:p ÃpΘ@l:p, 0 (Proc) 2Q ÃpΘ2Q, 0

(Par)
T ÃpΘT ′, R S ÃpΘS′, R′

T |S ÃpΘT ′ |S′, R |R′ (Node)
U ÃpΘU ′, R

a[ U ] ÃpΘa[ U ′ ], R

(Up)
match(U, χ) = σ V σ ÃpΘV ′, R Θ = (p, l, χ, V, P )

a[ U ] ÃpΘa[ V ′ ], Pσ{l/ ª, p/.} |R

Table 2: Update Semantics

Web Services. In the introduction, we described the
hyperlink example. Here we generalise this example to
arbitrary web services. We define a web service c with
parameters z̃, body P , and type of result specified by
the distinct variables w̃ bound by P :

Def c(z̃) as P out 〈w̃〉 ,!c(z̃, l, x). P. go l. x〈w̃〉
where l and x are fixed parameters (not in P, w̃) which
are used to specify the return location and channel.
For example, process R described in the introduction
can be written Def get(q) as copyq(X) out 〈X〉.

We specify a service call at l to the service c at m,
sending actual parameters ṽ and expecting in return
the result specified by distinct bound variables w̃:

l·Call m·c〈ṽ〉 ret (w̃).Q , (νb)(go m.c〈ṽ, l, b〉 | b(w̃).Q)

This process establishes a private session channel b,
which it passes to the web service as the unique return
channel. Returning to the hyperlink example, the pro-
cess Q running at l can be given by

!load(m, q, p). l·Call m·get〈q〉 ret (X).pastep〈X〉
Notice that it is easy to model subscription to con-

tinuous services in our model, by simply replicating
the input on the session channel:

l·Sub m·c〈ṽ〉 ret (w̃).P , (νb)(go m.c〈ṽ, l, b〉 | !b(w̃).P )

Note that some web services may take as a parameter
or return as a result some data containing another ser-
vice call (for example, see the intensional parameters

of [1]). In our system the choice of when to invoke
such nested services is completely open, and is left to
the service designer.

XLink Base. We look at a refined example of the
use of linking, along the lines of XLink. Links specify
both of their endpoints, and therefore can be stored in
some external repository, for example

XLink[ To[ @n:q ] | From[ @l:p ] | Code[ 2P ] ]

XLinkBase[ XLink[ ... ] | ... | XLink[ ... ] ]

Suppose that we want to download from an XLink
server the links associated with node p in the local
repository at l.

We can define a function xload which takes a pa-
rameter p and requests from the XLink service xls at
m all the XLinks originating from @l:p, in order to
paste them under p at location l:

!xload(p).l·Sub m·xls〈l, p〉 ret (x, y, 2χ)
.pastep〈Link[ To[ @x:y ] | Code[ 2χ ] ]〉

Service xls defined below is the XLink server. It takes
as parameters the two components l, p making up the
From endpoint of a link, and returns all the pairs
To, Code defined in the database for @l:p.

Def xls(l, p) as P out 〈x, y, 2χ〉

P = copyp1
(@x:y).copyp2

(2χ)

p1 = XLinkBase/XLink[ From[ @l:p ] ]/To



copyp(X).P , updatep(X, X).P copy the tree at p and use it in P

readp(@x:y).P , updatep(@x:y, @x:y).P

�
read the pointer at p,
use its location and path in P

cutp(X).P , updatep(X, 0).P cut the tree at p and use it in p

pastep〈T 〉.P , updatep(X, X |T ).P

�
where X is not free in T or P ,
paste tree T at p and evolve to P

runp , updatep(2X, 2X).X run the scripted process at p

Table 3: Derived Commands

p2 = XLinkBase/XLink[ From[ @l:p ] | To[ @x:y ] ]/Code

In p1 we use the XPath syntax XLink[ From[ @l:p ] ]/To
to identify the node To which is a son of node XLink
and a sibling of From[ @l:p ]; similarly for p2.

Forms. Forms enhance documents with the ability to
input data from a user and then send it to a server for
processing. For example, assuming that the server is
at location s, that the form is at path p, and that the
code to process the form result is called handler, we
have

form[ input[ 0 ]

| submit[ 2copy./../input(X).go s.handler〈X〉 ]
| reset[ 2cut./../input(X) ]]

where runp/form/submit (or runp/form/reset) is the event
generated by clicking on the submit (or reset) button.
Some user input T can be provided by a process

pastep/form/input〈T 〉

and on the server there will be a handler ready to deal
with the received data

s [S ‖ !handler(X).P |... ]

This example is suggestive of the usefulness of embed-
ding processes rather than just service calls in a doc-
ument: the code to handle submission may vary from
form to form, and for example some input validation
could be performed on the client side.

4 Behaviour of Dynamic Web Data

In the hyperlink example of the introduction, we have
stated that process Q and its specification Qs have the
same intended behaviour. In this section we provide
the formal analysis to justify this claim. We do this in
several stages. First, we define what it means for two
Xdπ networks to be equivalent. Then, we indicate how
to translate Xdπ into another (equivalent) calculus,
called Xπ2, where it is easier to separate reasoning
about processes from reasoning about data. Finally,
we define process equivalence on Xπ2 terms.

Network Equivalence. We apply a standard tech-
nique for reasoning about processes distributed be-
tween locations to our non-standard setting. The net-
work contexts are

C ::= − | C |N | (νc) C

We define a barbed congruence between networks which
is reduction-closed, closed with respect to network con-
texts, and which satisfies an additional observation re-
lation described using barbs. In our case, the barbs
describe the update commands, the commands which
directly affect the data.

Definition 4.1 A barb has the form l·p, where l is a
location name and p is a path. The observation rela-
tion, denoted by N ↓ l·p, is a binary relation between
Xdπ-networks and barbs defined by N ↓l·p iff

∃C[−],S,χ,U,P,Q. N ≡ C[l [S ‖ updatep(χ,U).P |Q) ]]

that is, N contains a location l with an updatep com-
mand. The weak observation relation, denoted N ⇓ l·β,
is defined by

N ⇓l·p iff ∃N ′. N ↘ N ′ ∧N ′ ↓l·p
Observing a barb corresponds to observe at what
points in some data-tree a process has the capability
to read or write data.

Definition 4.2 Barbed congruence ('b) is the largest
symmetric relation R on Xdπ-networks such that
N RM implies

• N and M have the same barbs: N ↓l·p⇒ M ⇓l·p;
• R is reduction-closed: N ↘ N ′ ⇒ (∃M ′.M ↘∗

M ′ ∧ N ′R M ′);

• R is closed under network contexts:
∀C.C[N ]RC[M ].

Example 4.1 Our first example illustrates that net-
work equivalence does not imply that the initial data
trees need to be equivalent:

N , l [ b[ 0 ]‖ !pasteb〈a[ 0 ]〉 | !cutb(X) ]



M , l [ b[ a[ 0 ] | a[ 0 ] ]‖ !pasteb〈a[ 0 ]〉 | !cutb(X) ]

We have N 'b M since each state reachable by one
network is also reachable by the other, and vice versa.

An interesting example of non-equivalence is

l [T ‖ updatep(X, X).0 ] 6'b l [T ‖ 0 ]

Despite this particular update (copy) command having
no effect on the data and continuation, we currently
regard it as observable since it has the capability to
modify the data at p, even if it does not use it.

Example 4.2 Our definition of web service is equiva-
lent to its specification. Consider the simple networks

N = l [T ‖ l·Call m·c〈ṽ〉 ret (w̃).Q|R ]

Ns = l [T ‖ go m.P{ṽ/z̃}.go l.Q|R ]

M = m [S ‖Def c(z̃) as P out 〈w̃〉 |R′ ]
If c does not appear free in R and R′, then

(νc)(N |M) 'b (νc)(Ns |M)

A special case of this example is the hyperlink example
discussed in the introduction. The restriction c is used
to prevent the context providing any competing service
on c. It is clearly not always appropriate however to
make a service name private. An alternative approach
is to introduce a linear type system, studied for exam-
ple in [6], to ensure service uniqueness.

Separation of Data and Processes. Our aim is
to define when two processes are equivalent in such a
way that, when the processes are put in the same po-
sition in a network, the resulting networks are equiv-
alent. In the technical report [15], we introduce the
Xπ2-calculus, in which the location structure is pushed
locally to the data and processes, in order to be able
to talk directly about processes. We translate the
Xdπ-calculus in the Xπ2-calculus, and equate Xdπ-
equivalence with Xπ2-equivalence.

Here we just summarise the translation and its re-
sults using the hyperlink example:

N = l [ Link[ To[ @m:q ] | Code[ 2P ] ]‖Q ] |m [S ‖R ]

Q =!load(m, q, p).(νc)(go m. get〈q, l, c〉 | c(X).pastep〈X〉)
R =!get(q, l, c).copyq(X).go l.c〈X〉

The translation to Xπ2 involves pushing the location
structure, in this case the l and m, inside the data and
processes. We use ([N ]) to denote the translated data
and ([S]) to denote the translation of tree S; also [[N ]]
for the translated processes and [[P ]]l for the transla-
tion of process P which depends on location l. Our
hyperlink example becomes

([N ]) = {l 7→ Link[ To[ @m:q ] | Code[ 2[[P ]]	 ] ],m 7→ ([S])}

[[N ]] =!l·load(m, q, p).(νc)(l·go m.m·get〈q, l, c〉
| l·c(X).pastep〈X〉)

| !m·get(q, l, c).m·copyq(X).m·go l.l·c〈X〉
The translation of N is denoted by (([N ]), [[N ]]). There
are several points to notice. The data translation ([ ])
assigns locations to translated trees, which remain the
same except that the scripted processes are translated
using the self location ª: in our example 2P is trans-
lated to 2[[P ]]	. The use of ª is necessary since it
is not pre-determined where the scripted process will
run. In our hyperlink example, it runs at l. With
an HTML form, for example, it is not known where
a form with an embedded scripted process will be re-
quired. The process translation [[ ]] embeds locations
in processes. In our example, it embeds location l in
Q and location m in R. After a migration command,
for example the go m. in Q, the location information
changes to m, following the intuition that the contin-
uation will be active at location m. A subtle point
of this translation is that in order to preserve the do-
main of a network during the translation, if a location
l contains only the empty process, then a located nil
process is produced by the encoding: [[0]]l = l·0.

The crucial properties of the encoding are that it
preserves the observation relation and is fully abstract
with respect to barbed congruence, where the barbed
congruence for Xπ2 is analogous to that for Xdπ.

Lemma 4.1 N ↓l·β if and only if (([N ]), [[N ]]) ↓l·β.

Theorem 4.1 N 'b M if and only if (([N ]), [[N ]]) 'b

(([M ]), [[M ]]).

Process Equivalence. We now have the machin-
ery to define process equivalence. We use the no-
tation (D, P ) to denote a network in Xπ2, where
D stands for located trees and P for located pro-
cesses. A network (D, P ) is well formed if and only
if (D,P ) = (([N ]), [[N ]]) for some Xdπ network N .

Definition 4.3 Processes P and Q are barbed equiv-
alent, denoted P ∼b Q, if and only if, for all D such
that (D, P ) is well formed, (D, P ) 'b (D, Q).

Example 4.3 Recall the web service example in Ex-
ample 4.2. The processes below are barbed equivalent:

Q1 = [[l·Call m·c〈ṽ〉 ret (w̃).Q]]l

Q2 = [[go m.P{ṽ/z̃}.go l.Q]]l

P0 = [[Def c(z̃) as P out 〈w̃〉]]m
(νc)(Q1 |P0) ∼b (νc)(Q2 |P0)



Example 4.4 We give now an example of how it is
possible to replicate a web service in such a way that
the behaviour of the system is the same as for the non-
replicated case. Let internal nondeterminism be repre-
sented as P ⊕ Q , (νa)(a | a.P | a.Q), where a does
not occur free in P,Q. We define two service calls to
two interchangeable services, service R1 on channel c
and R2 on channel d:

Q1 = [[l·Call m·c〈ṽ〉 ret (w̃).Q]]l

Q2 = [[l·Call n·d〈ṽ〉 ret (w̃).Q′]]l

Pm = [[Def c(z̃) as P1 out 〈w̃〉]]m
P1 = [[go n.d〈z̃, l, x〉 ⊕R1]]m

Pn = [[Def d(z̃) as P2 out 〈w̃〉]]n
P2 = [[go m.c〈z̃, l, x〉 ⊕R2]]n

We can show that, regardless of which service is
invoked, a system built out of these processes behaves
in the same way:

Q1 |Pm |Pn ∼b Q2 |Pm |Pn

We can also show a result analogous to the single web-
service given in Example 4.3. Given the specification
process

Qs = [[go m.R1{ṽ/z̃}.go l.Q⊕ go n.R2{ṽ/z̃}.go l.Q′]]l

we have the equivalence below

(νc, d)(Q1 |Pm |Pn) ∼b (νc, d)(Qs |Pm |Pn)

where the restriction of c and d avoids compet-
ing services on the same channel. Now let Q′

s =
[[go m.R1{ṽ/z̃}.go l.Q]]l and let Q = Q′, R1 = R2,
where R1 does not have any barb at m. We have

(νc, d)(Q1 |Pm |Pn) ∼b (νc, d)(Q′s |Pm |Pn).

This equivalence illustrates that we can replicate a web
service without a client’s knowledge.

5 A Bisimulation-Based Proof Method

Equivalences in the style of those seen in the previous
section, are known to be difficult to use. In particular
the condition of closure under contexts involves a uni-
versal quantification on processes which complicates
the proofs. We give here the idea of a proof method
based on a labelled bisimulation where congruence is
a derived property. The details can be found in [15].
In particular, we develop a bisimulation equivalence ≈
with the property that, given two Xπ2 processes P, Q,
then P ≈ Q implies P ∼b Q.

Our bisimulation is based on a labelled transition
system for Xπ2 processes, and we give below a few
sample rules which illustrate the main points of the

construction. We start with the higher-order features
illustrated by the rule for output, given by

(Out) l·c〈ṽ〉 l·c〈ṽ〉−→ l·0
Consider the case where ṽ contains a tree with a
scripted process 2P inside. A bisimulation requiring
syntactical identity for the action of the simulating
process would clearly be too restrictive. For this rea-
son, we resort to higher-order bisimulation: we require

the action above to be matched by τ∗−→l·c〈ṽ′〉−→ τ∗−→, where
ṽ′ contains 2Q, with P ≈ Q.

Higher order bisimulation for concurrent processes
has been studied for example in [30, 12, 29]. A well-
known problem with the technique consists in prov-
ing the congruence property of bisimulation, which is
complicated by having the operators for parallel com-
position and functional application in the same calcu-
lus. In Xπ2, the only form of functional application is
given by the command run for running scripted code.
We can get around the congruence problem by show-
ing that our bisimulation, based on the lts with the
rule

(Run) l·runp
l·runp−→ l·0

is a congruence, without incurring in the problem men-
tioned above. We then show, by the soundness of the
proof method, that this choice is compatible with the
semantics of the calculus. The idea is that running
a script is just like placing in parallel a new process,
and if bisimulation is closed under parallel composi-
tion, then it is sound with respect to script execution.

We now illustrate a subtlety of bisimulation re-
lated to network composition. Consider the two Xdπ
networks N = l [T ‖ 0 ] and M = l [T ‖Q ], where
Q = go m.go l.cut/(X). We have that 0 6∼b Q, since
composing N and M with a network containing loca-
tion m, Q can reduce and produce a barb. The bisimu-
lation relation must therefore be able to cope with the
extension of the domain of processes. We adopt the
following technique: in order for two processes to be
bisimilar, they must have the same domain, and if one
makes and action, possibly extending the domain, the
other one must match the action and become a bisim-
ilar process, and therefore have the same (extended)
domain. The extension of the domain is made possible
by the lts rule

(Zero) 0 τ−→ l·0
The bisimulation relation sketched above is not

complete. For example there is a problem inherently
connected with the higher-order technique that we
have chosen: even requiring bisimilarity for 2P and
2Q on the actions can be considered too restrictive.
In fact, it could be the case that P 6∼b Q, but 2P
and 2Q are only run inside some context C such that
C[P ] ∼b C[Q]. We leave it to future work to explore
this interesting issue.



6 Concluding Remarks

This paper introduces Xdπ, a simple calculus for de-
scribing the interaction between data and processes
across distributed locations. We use a simple data
model consisting of unordered labelled trees, with em-
bedded processes and pointers to other parts of the
network, and π-processes extended with an explicit
migration primitive and an update command for in-
teracting with data. Unlike the π-calculus and its
extensions, where typically data are encoded as pro-
cesses, the Xdπ-calculus models data and processes at
the same level of abstraction, enabling us to study how
properties of data can be affected by process interac-
tion.

Alex Ahern has developed a prototype implementa-
tion, adapting the ideas presented here to XML stan-
dards. The implementation embeds processes in XML
documents and uses XPath as a query language. Com-
munication between peers is provided through SOAP-
based web services and the working space of each lo-
cation is endowed with a process scheduler based on
ideas from PICT [24]. We aim to continue this im-
plementation work, perhaps incorporating ideas from
other recent work on languages based on the π-calculus
[11, 13].

There are many similarities between our model and
features of the Active XML [4] implementation, and
we are in the process of doing an in-depth comparison
between the two projects.

Developing process equivalences for Xdπ is non-
trivial. We have defined a notion of barbed equivalence
between processes, based on the update operations
that processes can perform on data, and have briefly
described a proof method for proving such equivalences
between processes. There are other possible defini-
tions of observational equivalence, and a comprehen-
sive study of these choices will be essential in future.
The coinductive proof method we have developed is
useful for many examples, but it is not complete, and
we leave it to future work to study alternative tech-
niques. We also plan to adapt type theories and rea-
soning techniques studied for distributed process cal-
culi to analyse security properties. This paper has
provided a first step towards the adaptation of tech-
niques associated with process calculi to reason about
the dynamic evolution of data on the Web.
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A The Xπ2-calculus

In Table 4 we give the syntax of Xπ2. Trees are defined
as in Xdπ. Networks are represented by pairs where
the first component (the store) is a function from lo-
cation names to data trees, and the second component
is a parallel composition of located processes. The
processes l·0 and l·b〈ṽ〉 represent respectively a null
process and an output process located at l — the in-
put, replicated input, migration and update are simi-
lar, and 0 stands for the null location. We use notation
lyP to express that P is a parallel composition of pro-
cesses located at l. The set loc(P ) denotes all li such
that P ≡ (νb̃)(l1yP1 | · · · | lnyPn). Well-formedness
requires that loc(P ) = dom(D) for (D,P ), that the mi-
gration message cannot be prefixed by any other pro-
cess, that the continuation of an explicitly located pro-
cess be located at the same location, except for the case
of go m.P , where P must be located at m. Scripted
processes must be located at ª. Additionally, well-
formedness requires the same conditions given for Xdπ.
In practice we encode Xdπ terms in Xπ2 terms, which
are then well-formed by construction. This guarantees
also that starting from a well-formed network (D, P )
there is always at least one process (possibly null) lo-
cated at l, for each l ∈ dom(D), and there is never a
process located at m for m 6∈ dom(D).

Structural congruence for trees, stores, networks
and processes is defined in Table 5. Note how
l·0 | lyP ≡ly P , whereas for example l·0 6≡ 0. In Ta-
ble 6 below, we give the semantic rules for Xπ2. The
rules correspond closely with those for Xdπ.

We give below the definitions of barbed congruence
for Xπ2, which are analogous to the ones for Xdπ.

Definition A.1 Reduction contexts for processes are
C ′ ::= − | C ′ |P | (νc)C ′, and reduction contexts for
networks are C ::= (B ] −, C ′), where C[(D,P )] is
(B ]D, C ′[P ]). Composition is defined only for stores
with disjoint domains.

Definition A.2 Barbs for networks are defined as

(D, P ) ↓l·p , ∃C ′, χ, U, P ′. P ≡ C ′[l·pχU.P ′]
(D,P ) ⇓l·p , (D, P ) →∗ (D′, P ′) ∧ (D′, P ′) ↓l·p

Definition A.3 Barbed congruence (∼=b) is the largest
symmetric relation R on Xπ2 networks such that
(D,P )R (B,Q) implies:

• (D,P ) ↓l·p⇒ (B, Q) ⇓l·p;
• (D,P ) → (D′, P ′) ⇒ (∃B′, Q′.(B,Q) →∗

(B′, Q′) ∧ (D′, P ′)R (B′, Q′));

• ∀ C.C[(D,P )]RC[(B, Q)].

The encoding from Xdπ to Xπ2 and the labelled-
bisimulation technique are defined formally in [15].



(Trees) T ::= 0 | T |T | a[ T ] | a[ 2P ] | a[ @l:p ]

(Processes)
P ::= l·0 | P |P | l·b〈ṽ〉 | l·b(z̃).P | !l·b(z̃).P | (νc)P

| l·go m.P | l·updatep(χ, V ).P | l〈P 〉 | 0
(Stores) D ::= ∅ | {l 7→ T} ]D

(Networks) (D, P )

Table 4: The calculus Xπ2.

Structural congruence is the least congruence satisfying alpha-conversion,
the commutative monoidal laws for (0, |) on trees, processes and networks,
and the axioms reported below:

(Trees) U ≡ U ′ ⇒ a[ U ] ≡ a[ U ′ ]
(Values) v′ ≡ w′ ∧ ṽ ≡ w̃ ⇒ v′, ṽ ≡ w′, w̃ P ≡ Q ⇒ 2P ≡ 2Q

(Processes) (νc)0 ≡ 0 l·0|lyP ≡ly P (νc)l·0 ≡ l·0
c 6∈ fn(P ) ⇒ P |(νc)Q ≡ (νc)(P |Q) (νc)(νc′)P ≡ (νc′)(νc)P
V ≡ V ′ ∧ P ≡ Q ⇒ l·updatep(χ, V ).P ≡ l·updatep(χ, V ′).Q

(Stores) dom(D) = dom(B) ∧ (∀l ∈ dom(D).D(l) ≡ B(l)) ⇒ D ≡ B

(Networks) D ≡ B ∧ P ≡ Q ⇒ (D,P ) ≡ (B, Q)
(Abstractions) V ≡ V ′ ⇒ (χ)V ≡ (χ)V ′

Table 5: Structural congruence for Xπ2.

The reduction relation is the least relation generated by the axioms below,
closed with respect to structural congruence and contexts.

(Exit) (∅,m·go l.P ) → (∅,m·0 | l〈P 〉)
(Enter) ({l 7→ T}, l〈P 〉) → ({l 7→ T}, P )

(Com) (∅, l·c〈ṽ〉 | l·c(x̃).P ) → (∅, P{ṽ/x̃})
(!Com) (∅, l·c〈ṽ〉 | !l·c(x̃).P ) → (∅, !l·c(x̃).P |P{ṽ/x̃})

(Update)
p(T ) Ãp p,l,χ,V T ′, {σ1, · · · , σn}

({l 7→ T}, l·updatep(χ, V ).P ) → ({l 7→ T ′}, Pσ1 | · · · |Pσn)

(Run)
p(T ) Ãp p,l,2X,2XT, {{2P1/2X}, · · · , {2Pn/2X}}

({l 7→ T}, l·runp) → ({l 7→ T}, P1 | · · · |Pn)
(The function Ãp is analogous to the one defined in Table 1.)

Table 6: Reduction axioms for Xπ2.



Structural congruence is the least congruence satisfying alpha-conversion,
the commutative monoidal laws for (0, |) on trees, processes and networks,
and the axioms reported below:

(Trees)

U ≡ V ⇒ a[ U ] ≡ a[ V ]

(Values)

P ≡ Q ⇒ 2P ≡ 2Q v′ ≡ w′ ∧ ṽ ≡ w̃ ⇒ v′, ṽ ≡ w′, w̃

(Processes)

(νc)0 ≡ 0 c 6∈ fn(P ) ⇒ P | (νc)Q ≡ (νc)(P |Q) (νc)(νc′)P ≡ (νc′)(νc)P

ṽ ≡ w̃ ⇒ c〈ṽ〉 ≡ c〈w̃〉 V ≡ V ′ ∧ P ≡ Q ⇒ updatep(χ, V ).P ≡ updatep(χ, V ′).Q

(Networks)

(νc)0 ≡ 0 c 6∈ fn(N) ⇒ N | (νc)M ≡ (νc)(N |M) (νc)(νc′)N ≡ (νc′)(νc)N

P ≡ Q ⇒ l〈P 〉 ⇒ l〈Q〉 l [T ‖ (νc)P ] ≡ (νc)l [T ‖P ]

T ≡ S ∧ P ≡ Q ⇒ l [T ‖P ] ≡ l [S ‖Q ]

Table 7: Structural congruence for Xdπ.


