
An Analog Characterization of Elementarily
Computable Functions over the Real Numbers

Olivier Bournez and Emmanuel Hainry

LORIA/INRIA, Nancy, France

April 14, 2003

An Analog Characterization of Elementarily Computable Functions over the Real Numbers



Introduction Continuous models Extension of L Conclusion

1. Introduction
The discrete world
The continuous world

2. Continuous models
Recursive analysis
Class G
Class L

3. Extension of L
New schemata
Properties of L∗

Characterization of E(R)

4. Conclusion

An Analog Characterization of Elementarily Computable Functions over the Real Numbers



Introduction Continuous models Extension of L Conclusion The discrete world The continuous world

Discrete, Continuous

I Discrete world: computing over N in discrete time.
(Turing machines, automata...)

I Continuous world: computing over R
I in discrete time.

(Recursive analysis, BSS machines)
I in continuous time.

(General Purpose Analog Computer, Neural networks...)
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Discrete World

Church’s thesis: All reasonable discrete computational models
compute the same functions.

Turing machines, as well as 2-stack automata compute recursive
functions (Rec = [0, S , U; COMP, REC , MU]).
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Sub-recursive functions

E = [0, S , U, +,ª; COMP, BSUM, BPROD]

En = [0, S , U, +,ª, En−1; COMP, BSUM, BPROD]

PR = [0, U, S ; COMP, REC ]

With
E0(x , y) = x + y

E1(x , y) = (x + 1) × (y + 1)
E2(x) = 2x

En+1(x) = E
[x]
n (1) for n ≥ 2 with f [0](x) = x

f [d+1](x) = f (f [d ](x))
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Continuous World

Several models:

I Recursive analysis

I GPAC

I R-recursive functions

I Optical models

I ...

But no equivalent of Church thesis.
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Recursive analysis: type 2 machines

A tape represents a real number:

Let νQ be a representation of the
rational numbers.
(xn)Ã x iff ∀i , |x − νQ(xi )| < 1

2i

M behaves like a Turing Machine

Read-only one-way input tapes
Write-only one-way output tape.
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Elementarily computable functions

Definition (Elementarily computable functions on compact domains)

A function f : [a, b] → R with a, b ∈ Q is elementarily computable
iff there exists φ : NN → NN elementary such that

∀X Ã x , (φ(X ))Ã f (x).

Definition (Elementarily computable functions on other domains)

A function f : [a, b) → R with a, b ∈ Q is elementarily computable
iff there exists φ : NN × N → NN elementary such that

∀M < b, ∀x ∈ [a, M], ∀X Ã x , (φ(X , M))Ã f (x).
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Class G ([Moore96])

Rec G

0 0

S 1

U U

Comp Comp

REC : f , g 7→ h

h(x , 0) = f (x)
h(x , n + 1) = g(x , n, h(x , n))

INT : f , g 7→ h

h(x , 0) = f (x)
∂yh(x , y) = g(x , y , h(x , y))

MU : x , f 7→ min{y ; f (x , y) = 0} MU : x , f 7→ inf{y |f (x , y) = 0}
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Troubles with G

I Not always well defined (0 × +∞ = 0, integration on non
integrable functions...)

I Contains bad functions (χQ which is nowhere continuous)

I Not physically reasonable (Zeno paradox ⇒ infinite energy
required)
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Class L ([Campagnolo00])

G L′

0 0

1 1, −1, π

U U

Comp Comp

INT : f , g 7→ h

h(x , 0) = f (x)
∂yh(x , y) = g(x , y , h(x , y))

LI : f , g 7→ h

h(x , 0) = f (x)
∂yh(x , y) = g(x , y)h(x , y)

MU
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Definition of L

Definition (θ3)
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theta3(x)

θ3(x) =

{

0 if x < 0
x3 if x ≥ 0

Definition (L)

L = [0, 1,−1, π, U, θ3; COMP, LI ]
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Properties of L

Theorem (Campagnolo)

L ⊂ E(R)

Theorem (Campagnolo)

E ⊂ DP(L)

All discrete elementary functions have a real extension in L.
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Definition of Ln

Definition (Ēn)

exp2(n) = 2n

expi+1(n) = exp
[n]
i (1)

Ēn is a monotonous real extension of expn.

Definition (Ln)

Ln = [0, 1,−1, π, U, θ3, ¯En−1; COMP, LI ].
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Properties of Ln

Theorem (Campagnolo)

Ln ⊂ En(R)

Theorem (Campagnolo)

En ⊂ DP(Ln)

All En-computable functions over N have a real extension in Ln.
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Observation

L fails to characterize elementarily computable functions over the
reals.

Question: How can we characterize elementarily computable
functions over the reals?

Observation

E(R) is not stable by composition.
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Definition of a weaker Composition schema

Definition (COMP)

COMP(f , g) is defined only if there exists a product of closed
intervals C such that Range(f ) ⊆ C ⊂ Domain(g).

COMP(f , g)(−→x ) = g(f (−→x )).

Remark: For total functions, this schema remains the classical
one.
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Definition of a limit operator

Definition (LIM)

Let f : R ×D → R and a polynomial β : D → R such that ∃K

such that ∀t, x ,
‖∂f

∂t
(t, x)‖ ≤ K exp(−tβ(x))

‖ ∂2f
∂t∂x

(t, x)‖ ≤ K exp(−tβ(x))
Then, on an interval I ⊂ R where β(x) > 0, F = LIM(f , β) is
defined by

F (x) = lim
t→+∞

f (t, x)

if this function is C2.
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New classes

L∗ = [0, 1,−1, U, θ3; COMP, LI , LIM]

L∗

n = [0, 1,−1, U, θ3, ¯En−1; COMP, LI , LIM]
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Basic properties of L∗

I
1
x

:

{

R>0 → R

x 7→ 1
x

belongs to L∗:

Let E = LI (0, exp(−tx)). E (t, x) =

{

1−exp(−tx))
x

if x 6= 0
t if x = 0

.

And 1
x

= LIM(E , x 7→ x).

I π ∈ L∗:
1 + x2 ∈ L∗, 1

1+x2 ∈ L∗.

arctan = LI (0, 1
1+x2 ) and π = 4 arctan(1).

I L ( L∗

An Analog Characterization of Elementarily Computable Functions over the Real Numbers



Introduction Continuous models Extension of L Conclusion New schemata Properties of L∗ Characterization of E(R)

Characterization of E(R)

Proposition

L∗ ⊆ E(R)

Proposition

Let f a C2 function defined on a compact domain,
if f ∈ E(R), then f ∈ L∗.
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Characterization of E(R)

Proposition

L∗ ⊆ E(R)

Proposition

Let f a C2 function defined on a compact domain,
if f ∈ E(R), then f ∈ L∗.

Theorem

If f is of class C2, has a compact domain,

f ∈ E(R) ⇔ f ∈ L∗.
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Characterization of En(R)

Proposition

L∗

n ⊆ En(R)

Proposition

Let f a C2 function defined on a compact domain,
if f ∈ En(R), then f ∈ L∗

n.

Theorem

If f is of class C2, has a compact domain,

f ∈ En(R) ⇔ f ∈ L∗

n
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Results

I Machine-independent characterization of real elementarily
computable functions.

I For C2 functions defined on a compact domain,

f ∈ E(R) ⇔ f ∈ L∗

f ∈ En(R) ⇔ f ∈ L∗

n

I Normal form:
If f ∈ L∗ or L∗

n, f can be written with at most two LIM.
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Perspectives

I What about functions over R?

I Improving our characterization:
I weaker limit schema
I avoiding limits
I improving normal form theorem

I Characterizing computable functions over the reals
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