An Analog Characterization of Elementarily Computable Functions over the Real Numbers

Olivier Bournez and Emmanuel Hainry

LORIA/INRIA, Nancy, France

April 14, 2003

1. Introduction

The discrete world The continuous world

2. Continuous models

Recursive analysis Class \mathcal{G} Class \mathcal{L}

3. Extension of \mathcal{L}

New schemata Properties of \mathcal{L}^* Characterization of $\mathcal{E}(\mathbb{R})$

4. Conclusion

Discrete, Continuous

- Discrete world: computing over N in discrete time. (Turing machines, automata...)
- Continuous world: computing over $\mathbb R$
 - in discrete time. (Recursive analysis, BSS machines)
 - in continuous time.

(General Purpose Analog Computer, Neural networks...)

Discrete World

Church's thesis: All reasonable discrete computational models compute the same functions.

Turing machines, as well as 2-stack automata compute recursive functions ($\mathcal{R}ec = [0, S, U; COMP, REC, MU]$).

Sub-recursive functions

$$\mathcal{E} = [0, S, U, +, \ominus; COMP, BSUM, BPROD]$$

$$\mathcal{E}_n = [0, S, U, +, \ominus, E_{n-1}; COMP, BSUM, BPROD]$$

 $\mathcal{PR} = [0, U, S; COMP, REC]$

With

$$E_0(x, y) = x + y$$

 $E_1(x, y) = (x + 1) \times (y + 1)$
 $E_2(x) = 2^x$
 $E_{n+1}(x) = E_n^{[x]}(1) \text{ for } n \ge 2$ with $f^{[0]}(x) = x$
 $f^{[d+1]}(x) = f(f^{[d]}(x))$

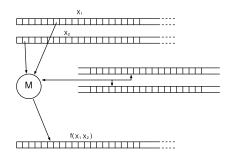
Continuous World

Several models:

- Recursive analysis
- GPAC
- \blacktriangleright \mathbb{R} -recursive functions
- Optical models

But no equivalent of Church thesis.

Recursive analysis: type 2 machines



A tape represents a real number:

Let $\nu_{\mathbb{Q}}$ be a representation of the rational numbers.

$$(x_n) \rightsquigarrow x \text{ iff } \forall i, |x - \nu_{\mathbb{Q}}(x_i)| < \frac{1}{2^i}$$

M behaves like a Turing Machine

Read-only one-way input tapes Write-only one-way output tape.

Elementarily computable functions

Definition (Elementarily computable functions on compact domains)

A function $f : [a, b] \to \mathbb{R}$ with $a, b \in \mathbb{Q}$ is elementarily computable iff there exists $\phi : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ elementary such that

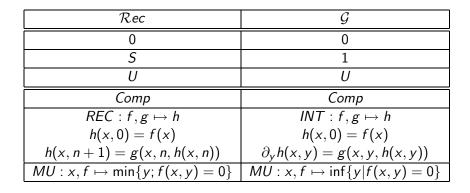
 $\forall X \rightsquigarrow x, (\phi(X)) \rightsquigarrow f(x).$

Definition (Elementarily computable functions on other domains)

A function $f : [a, b) \to \mathbb{R}$ with $a, b \in \mathbb{Q}$ is elementarily computable iff there exists $\phi : \mathbb{N}^{\mathbb{N}} \times \mathbb{N} \to \mathbb{N}^{\mathbb{N}}$ elementary such that

$$\forall M < b, \forall x \in [a, M], \forall X \rightsquigarrow x, (\phi(X, M)) \rightsquigarrow f(x).$$

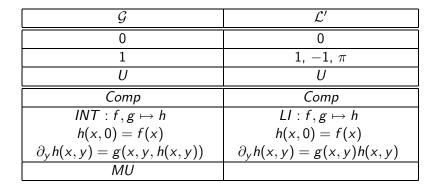
Class \mathcal{G} ([Moore96])



Troubles with \mathcal{G}

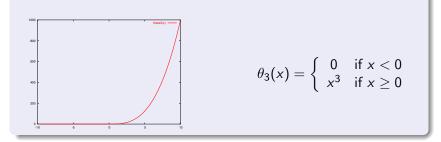
- ► Not always well defined (0 × +∞ = 0, integration on non integrable functions...)
- Contains bad functions ($\chi_{\mathbb{Q}}$ which is nowhere continuous)
- ► Not physically reasonable (Zeno paradox ⇒ infinite energy required)

Class \mathcal{L} ([Campagnolo00])



Definition of \mathcal{L}

Definition (θ_3)



Definition (\mathcal{L})

$$\mathcal{L} = [0, 1, -1, \pi, U, \theta_3; COMP, LI]$$

Properties of \mathcal{L}

Theorem (Campagnolo)

$$\mathcal{L} \subset \mathcal{E}(\mathbb{R})$$

Theorem (Campagnolo)

$$\mathcal{E} \subset DP(\mathcal{L})$$

All discrete elementary functions have a real extension in \mathcal{L} .

Definition of \mathcal{L}_n

Definition (\overline{E}_n)

$$\begin{split} &\exp_2(n) = 2^n \\ &\exp_{i+1}(n) = \exp_i^{[n]}(1) \\ &\bar{E}_n \text{ is a monotonous real extension of } \exp_n. \end{split}$$

Definition (\mathcal{L}_n)

$$\mathcal{L}_n = [0, 1, -1, \pi, U, \theta_3, \bar{E_{n-1}}; COMP, LI].$$

Properties of \mathcal{L}_n

Theorem (Campagnolo)

$$\mathcal{L}_n \subset \mathcal{E}_n(\mathbb{R})$$

Theorem (Campagnolo)

$$\mathcal{E}_n \subset DP(\mathcal{L}_n)$$

All \mathcal{E}_n -computable functions over \mathbb{N} have a real extension in \mathcal{L}_n .

Observation

 $\ensuremath{\mathcal{L}}$ fails to characterize elementarily computable functions over the reals.

Question: How can we characterize elementarily computable functions over the reals?

Observation

 $\mathcal{E}(\mathbb{R})$ is not stable by composition.

Definition of a weaker Composition schema

Definition (COMP)

COMP(f,g) is defined only if there exists a product of closed intervals C such that $Range(f) \subseteq C \subset Domain(g)$.

$$COMP(f,g)(\overrightarrow{x}) = g(f(\overrightarrow{x})).$$

Remark: For total functions, this schema remains the classical one.

Definition of a limit operator

Definition (LIM)

Let $f : \mathbb{R} \times \mathcal{D} \to \mathbb{R}$ and a polynomial $\beta : \mathcal{D} \to \mathbb{R}$ such that $\exists K$ such that $\forall t, x$, $\|\frac{\partial f}{\partial t}(t, x)\| \leq K \exp(-t\beta(x))$ $\|\frac{\partial^2 f}{\partial t\partial x}(t, x)\| \leq K \exp(-t\beta(x))$ Then, on an interval $I \subset \mathbb{R}$ where $\beta(x) > 0$, $F = LIM(f, \beta)$ is defined by

$$F(x) = \lim_{t \to +\infty} f(t, x)$$

if this function is C^2 .

New classes

$$\mathcal{L}^* = [0, 1, -1, U, \theta_3; COMP, LI, LIM]$$

$$\mathcal{L}_{n}^{*} = [0, 1, -1, U, \theta_{3}, \bar{E_{n-1}}; COMP, LI, LIM]$$

.

Basic properties of \mathcal{L}^\ast

New schemata Properties of \mathcal{L}^* Characterization of $\mathcal{E}(\mathbb{R})$

Characterization of $\mathcal{E}(\mathbb{R})$

Proposition

$$\mathcal{L}^* \subseteq \mathcal{E}(\mathbb{R})$$

Proposition

Let $f \in C^2$ function defined on a compact domain, if $f \in \mathcal{E}(\mathbb{R})$, then $f \in \mathcal{L}^*$.

New schemata Properties of \mathcal{L}^* Characterization of $\mathcal{E}(\mathbb{R})$

Characterization of $\mathcal{E}(\mathbb{R})$

Proposition

$$\mathcal{L}^* \subseteq \mathcal{E}(\mathbb{R})$$

Proposition

Let $f = C^2$ function defined on a compact domain, if $f \in \mathcal{E}(\mathbb{R})$, then $f \in \mathcal{L}^*$.

Theorem

If f is of class C^2 , has a compact domain,

$$f\in \mathcal{E}(\mathbb{R}) \Leftrightarrow f\in \mathcal{L}^*.$$

New schemata Properties of \mathcal{L}^* Characterization of $\mathcal{E}(\mathbb{R})$

Characterization of $\mathcal{E}_n(\mathbb{R})$

Proposition

$$\mathcal{L}_n^* \subseteq \mathcal{E}_n(\mathbb{R})$$

Proposition

Let $f = C^2$ function defined on a compact domain, if $f \in \mathcal{E}_n(\mathbb{R})$, then $f \in \mathcal{L}_n^*$.

Theorem

If f is of class C^2 , has a compact domain,

$$f \in \mathcal{E}_n(\mathbb{R}) \Leftrightarrow f \in \mathcal{L}_n^*$$

- Machine-independent characterization of real elementarily computable functions.
- For C^2 functions defined on a compact domain,

$$f \in \mathcal{E}(\mathbb{R}) \Leftrightarrow f \in \mathcal{L}^*$$

 $f \in \mathcal{E}_n(\mathbb{R}) \Leftrightarrow f \in \mathcal{L}_n^*$

Normal form: If $f \in \mathcal{L}^*$ or \mathcal{L}_n^* , f can be written with at most two *LIM*.

Perspectives

- What about functions over \mathbb{R} ?
- Improving our characterization:
 - weaker limit schema
 - avoiding limits
 - improving normal form theorem
- Characterizing computable functions over the reals