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Abstract

We present a survey on methods to analyse the program complexity,
based on termination orderings and quasi-interpretations. This method
can be implemented to certify the runtime (or space) of programs. We
demonstrate that the class of functions computed by first order functional
programs over free algebras which terminate by Permutation Path Order-
ing (resp. Lexicographic Path Ordering) and admit a quasi-interpretation
bounded by a polynomial, is exactly the class of functions computable in
polynomial time (resp. space).

1 Introduction

This paper is part of a general investigation on program complexity analysis.
We have introduced program quasi-interpretations, see [25, 26, 27, 7, 5], in order
to bound the size of program inputs and outputs. Combined with termination
methods, we can determine the runtime (or space) of a program.

In this survey, we consider first order functional programs for which termina-
tion is established by using recursive path orderings. Suppose that a programs
admits a quasi-interpretation which is bounded by a polynomial. We obtain
different resource upper bounds base on termination proofs.

e If the program terminates by permutation path ordering, then it is com-
putable in polynomial time. It is worth noticing that we have to compute
the program by call-by value semantics with a cache.

e If the program terminates by lexicographic path ordering, then the com-
putation consumes a polynomial space.

From a practical point of view, the bottom line is this. The complexity
analysis can be performed by static analysis and can be partially automatized.
Moreover, we can build resource certificates similar to the idea behind proof-
carrying code techniques. Indeed, Krishnamoorthy and Narendran in [20] have
proved that termination by recursive path orderings is NP-complete. To find
a quasi-interpretation is not too difficult in general, because the program de-
notation turns out to be a good candidate, see [28]. Moreover, Amadio shows
in [1] that synthesis max-plus quasi-interpretations is NP-hard. These ideas
have been applied in a resource byte-code verifier [2].

From a theoretical point of view, we characterize the class PTIME and
PspacE. This work is related to Bellantoni and Cook [4], Leivant [22] and
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Marion [23] ideas to delineate complexity classes. However most of the com-
plexity class characterizations focus on functions and not on algorithms. A
consequence of this kind of extensional approaches is the fact they fail to say
something meaningful about programming theory. For this reason, we are more
interested by the algorithms than by functions. Hence, we move from exten-
sional characterizations to intensional ones. Such intensional approach have
actually been studied by Caseiro [8] and Hofmann [18].

2 First order functional programming

Throughout the following discussion, we consider three disjoint sets X, F,C of
variables, function symbols and constructors.

2.1 Syntax of programs

Definition 1. The sets of terms, patterns and function rules are defined in the
following way:

(Constructor terms) 7(C)>u n=c | c(ur, - ,up)

(Ground terms) TC,F)>s s=cle(sy, o, 8n) | £(s1,000,8p)
(terms) TC,F, X))ot u=cl|ax]|clty, -, tn) | £t1, - ,tn)
(patterns) P>p s=c|x|c(p, - ,pn)

(rules) D>d = f(p1,-- ,pn) — t

where * € X, £ € F, and ¢ € C'. The size [t| of a term t is the number of
symbols in ¢.

Definition 2. A program is a quintuplet main = (X,C, F, &, f) such that:
e £ is a set of D-rules.

e Each variable in the right-hand side of a rule also appears in the left hand
side of the same rule.

e f is the main function symbol of main.

All along the paper, we assume that the set of rules is implicit and we use
main to denote the program and its main symbol.

2.2 Semantics

The semantics is given by the term rewriting system £. We recall briefly some
vocabulary of rewriting theories. For further details, one might consult Der-
showitz and Jouannaud’s survey [14] from which we take the notations. The
rewriting relation — induced by a program main is defined as follows t — s
if s is obtained from t by applying one of the rules of £. The relation = is
the reflexive-transitive closure of —. Lastly, t5s means that t™>s and s is in

normal form, i.e. no other rule may be applied. A ground (resp. constructor)
substitution is a substitution from X to 7(C,F) (resp. 7(C)).

1We shall use type writer font for function symbol and bold face font for constructors.



We now give the semantics of confluent programs, that is programs for which
the associated rewrite system is confluent. The domain of interpretation is the
constructor algebra 7 (C).

Definition 3. Let main be a confluent program. The function computed by
main is the partial function [main] : 7(C)" — T(C) where n is the arity of
main which is defined as follows. For all u; € 7(C), [main](uy,- - ,u,) = v iff
main(uq,- - - ,un)!—w with v € T(C). Note that due to the form of the rules a
constructor term is a normal form ; as the program is confluent, it is uniquely
defined. Otherwise, that is if there is no such normal form, [main](uy,- - ,up)
is undefined.

3 Orderings on terms

The use of orderings has been widely studied in order to prove the termination of
term rewriting systems. Among them, we are interested here by path orderings
and especially the Multiset Path Ordering (MPO) and the Lezicographic Path
Ordering (LPO) respectively introduced by Plaisted [29] and Dershowitz [13]
and by Kamin and Lévy [19]. We briefly describe them, together with some
basic properties we shall use later on.

3.1 Path orderings

Definition 4. Let M = {m4,--- ,mp} and N = {ny,--- ,n,} be two multisets
with the same number of elements and < be an ordering over these elements.
The permutation extension of < over multisets is defined in the following way:
M <™ N if and only if there exists a permutation 7w such that

o V1 <i<p,mi=ng).
e J1 < j <n such that m; < Ny ()-

Definition 5. Let < be a term ordering. We note <! its usual lexicographic
extension.

A precedence < (strict precedence <) is an ordering (strict ordering) on
the set F of function symbols. Define the equivalence relation ~x as £ ~r g iff
f <z g and g <X £. This order <z on function symbol extends canonically on
C U F by saying that

e constructors are smaller than function symbols,
e two constructors are incomparable.

It is worth noting that constructors are minimal symbols with respect to <.
Moreover, we will consider that constructors and all variables are incomparable.

Definition 6. Given a precedence <z, we define the Multiset Path Ordering
and the Lexicographic Path Ordering by the following (inductive) rules. =z
should be taken in {m,[}.



{517"'a3n} _<m {tlv"'atn} Sjrpo ti

ceC ferFyc
c(s1, -, Sn) <apo C(t1, -+ ,tn) $ <apo foiytiy )
S; ‘<wpof(t17"'atn) g—<]:fg€fUC
g(sla"' asm) <xpo f(tla"' 7tn)
(Slu"' 7Sn) '<;E;po (tly"' 7tn) f XF g Sj "<zpo f(th" : 7tn)

g(su"' ;Sn) =zpo f(tla"' atn)

Definition 7. A program is terminating by M PO (resp. LPO) if there is a
precedence on F such that for each rule I — r of &€, we have r <, | (resp.

%lpo).

Remark 8. Note that these orderings are special cases of the more general Re-
cursive Path Ordering (RPO) with status a le Kamin & Lévy [19] where the
status of each constructor is permutation and the status of functions symbols is
either permutation (MPO) or lexicographic (LPO).

Note also that they doesn’t exactly define the usual MPO or LPO but can
easily be shown to capture the same functions (but not necessarily the same al-
gorithms). Especially, the permutation ordering we use for MPO is a restriction
of the multiset ordering usually used, but the resulting ordering is nonetheless
as powerful as the original one (see [27]).

Theorem 9 (Hofbauer [17], Cichon [10]). The set of functions computed
by programs that terminate with respect to MPO is exactly the set of primitive
recursive functions.

Theorem 10 (Weiermann [31]). The set of functions computed by programs
that terminate with respect to LPO is exactly the set of multiply-recursive func-
tions.

3.2 Polynomial quasi-interpretation

Quasi-interpretations have been introduced by Bonfante [5] and by Marion and
Moyen [27, 24].

Definition 11 (Quasi-interpretations). A polynomial quasi-interpretation
(or shorter in this paper, quasi-interpretation) of a symbol a € F|JC whose
arity is n is a function (a) : R*" — R such that :

e (a) is bounded by a polynomial.
o (a) (X1, -, Xp) > X, foralll <i<n.
e (a) is increasing (not necessarily strictly) with respect to each variable.

As a consequence, the quasi-interpretation of a constant is a positive number.

We extend a quasi-interpretation (—) to terms canonically: (f(t1,- - ,t,)) =
(fD(Qt1), -« -, (tn)) where we take the identity for variables.

Moreover, quasi-interpretation are classified according to the quasi-interpretation
of constructors. A quasi-interpretation is



e of kind 0 if (c)(X1, -+, Xn) =2 iy Xi +0,b>1;
e of kind 1 if (c) is a polynomial whose degree is at most 1 in each variable;
e of kind 2 if (c) is any polynomial.

If nothing is specified, we will always consider quasi-interpretation to be of
kind 0.

Definition 12. (—) is a quasi-interpretation of a program main if for each rule
I — r € &(main) and for each closed substitution o, (lo) > (ro).

Remark 13. Quasi-interpretations do not ensure termination. Indeed, the rule
f(x) — £(x) admits a quasi-interpretation but doesn’t terminate.

Moreover, quasi-interpretation do not give enough information to decide
termination as stated in the following theorem.

Theorem 14. Let main be a system admitting a quasi-interpretation (any kind).
It is undecidable to know whether the system terminates or not.

Proof. Senizergues proved in [30] that the termination of non-increasing semi-
Thue systems is undecidable. But, these semi-Thue systems are a particular
case of rewriting systems with a quasi-interpretation (simply take the identity
polynomial for the unary symbols and 1 for the unique constant €) . The theorem
follows immediately. O

But the quasi-interpretation give nonetheless some information about the
complexity of the program. Indeed, a program admitting a quasi-interpretation
(any kind) either terminates in triple exponential time or will loop forever, thus
leading to a potential runtime detection of non-termination.

3.3 Interpretations

Definition 15. An interpretation is a quasi-interpretation with the following
restrictions:

(i) (f) is a polynomial,
(11) (]fD(le T aXn) > Xi,
(iii) (lo) > (ro).

Programs admitting an interpretation terminate. This sort of termination
proof, by polynomial interpretations, was introduced by Lankford [21] and turns
out to be a useful tool for proving termination (see [9, 15] among other).

The kind of an interpretation is determined according to the interpretation
of constructors, in the same way as for quasi-interpretations.

Theorem 16 (Bonfante, Cichon, Marion and Touzet [6]). According to
its kind, interpretation characterise the following complexity classes:

kind of the interpretation | confluent system | non-confluent system
0 PTIME NPTIME
1 ETIME NETIME
2 EoTIME NE>TIME




Where non-confluent systems are defined following Gurevich and Gréadel [16]:

Definition 17 (Non confluent programs). Given a quintuplet main =
(X,C,F,&, £) and an order < on constructor terms—actually, this order should
be computable in polynomial time—, the semantics of main, that is [main] :
T(C)" — T(C) where n is the arity of main is defined as follows. For all
U; € T(C),

[main](uy, - u,) = mjtx{v € 7(C) | main(uq, - - 7un)!—w}.

4 Termination orderings and quasi-interpretations

4.1 MPO and quasi-interpretations

Definition 18. A MPO®/-program of kind k is a MPO-program that admits
a quasi-interpretation of kind k.

Theorem 19 (Marion & Moyen [27]). The set of functions computed by
MPO®R! -programs is exactly the set of functions computable in

e polynomial time for kind O;
e cexponential time for kind 1;
e double exponential time for kind 2.

Example 20. Given a list I, sort([) sorts the elements of {. The algorithm is
the insertion sort. Constructors are C = {tt, ff, 0, S, nil, cons}.

if tt then z else y— =z
if ffthen zelse y—y
0 < S(y) — tt
z<0—ff
S(z) <S(y) —z <y
insert(a, nil) — cons(a, nil)
insert(a,cons(b,l)) — if a < b then cons(a,cons(b,l))
else cons(b,insert(a,l))
sort(nil) — nil

sort(cons(a,l)) — insert(a, sort(l))

This program terminates by MPO with the precedence if =<y _ < _ <r
insert <z sort. It admits the following quasi-interpretation (of kind 0):

o (tt) = () = (0) = (nil) = 1

e (S)(X)=X+1
e (cons)(X,Y) = (insert)(X,Y)=X+Y +1
o (sort)(X)=X

So, it computes a function of PTIME.



Example 21. The following algorithm computes the length of the longest com-
mon subsequence of two sequences.

les(e,y) —
les(z,€) —
Les(i(z),i(y)) — S(lcS(x v))
les(i(z),i(y) — max(lcs(x 3()), Les(i(x),y)) i#j
max(n,0) —
max(0,m) — m
max(S(n),S(m)) — S(max(n,m)) i€ {a,b}

It terminates by MPO with the precedence max <z lcs and it admits the
following quasi-interpretation (of kind 0):

* () =(0) =1

e (a)(X) = (b)(X) = (Sh(X) = X +1

e (les)(X,Y) = (max)(X,Y) = max(X,Y)
So, it computes a function of PTIME.

This latest example is particularly interesting. Indeed, if one apply the
rules of the program, one may get a exponentially long derivation chain, but
the theorem states that it can be computed in polynomial time. Actually, one
should be careful not to confuse the algorithm and the function it computes.
This function (longest common subsequence) is a classical textbook example of
so called “dynamic programming” (see chapter 16 of [12]) and can in this way
be computed in polynomial time.

So, the theorem doesn’t characterise the complexity of the algorithm, which
we should call its ezplicit complexity but the complexity of the function com-
puted by this algorithm, which we should call its implicit complexity.

Of course, one may ask whether the polynomial bound is achievable or not
(we mean automatically achievable from the program). And it actually is, sim-
ply by simulating at runtime the dynamic programming technique, that is stor-
ing each and every result of a function call in a table and avoiding to recompute
the same function call if it’s already in the table. This technique is inspired from
Jones’ rereading of Cook classical technique over 2 way push-down automatas
([11, 3]) and is called memoisation.

This memoisation-evaluation of the program is implemented by the cache-
interpreter of Figure 1. In the general case, memoisation is not used because
one cannot decide which result will be reused and the cache may become too
big to be really useful. In our particular case, the termination ordering gives
enough informations on the structure of the program to allow minimisation of
the cach [25].

4.2 LPO and quasi-interpretations

Definition 22. A LPO®/-program of kind k is a LPO-program that admits a
quasi-interpretation of kind k.



Tro ="V

E,o{(C,z) — (C,v)

(Variable)

celC 5,0’ - <Ci,1,ti> — (Ci,vi>
8,0’ H <C(),C(t1, e 7tn)> - <Cn,C(”U1,~ o 7vn)>

(Constructor)

feF & ok {(Ci_i,t;) — (Civ) (f(v1,-,0,),v) € Cy
(Cach reading)
570 + <003f(t1a e 7tn)> - <Cnav>

870|_<Cz 1; > <C7,7UZ> f(plu 7pn>_’7"€g piJI:Ui 570'/|_<Cn,7"> -

(C,v)

E,oF(Co,f(t1, - ,tn)) — (C’U(f(vl,--- ,Un), V), V)

Figure 1: Evaluation of a rewriting system with memorization of intermediate
evaluations

Theorem 23 (Bonfante, Marion & Moyen [7]). The set of functions com-
puted by LPOR! -programs is exactly the set of functions computable in

e polynomial space for kind 0;
e exponential space for kind 1;
e double exponential space for kind 2.

Example 24. The Quantified Boolean Formula (QBF) is the problem of the
validity of a boolean formula with quantifiers over propositional variables. It
is well-known to be PSPACE complete. Without loss of generality, we restrict
formulae to =, V,3. It can be solved by the following rules:

not(tt) — ff in(z,nil) — ff
not(ff) — tt in(z, cons(a,l)) — or(z =a,in(z,l))
or(tt,z) — tt
or(ff,z) —=x main(¢) — ver(¢,nil)
0=0 —tt ver(Var(z),t) — in(x,t)
S(z)=0 —ff ver(Not(¢),t) — not(ver(¢,t))
0=S(y) —ff ver(Or (¢, ¢2),t) — or(ver(ds,t),ver(ds,t))
z)=8S(y) —z=y ver(Exists(n, ¢),t) — or(ver(¢,cons(n,t)),ver(¢p,t))

These rules are ordered by LPO by putting {not, or, =_} <z in <r ver <z
main.
They admit the following quasi-interpretations (of kind 0):

o (c)(Xy,--,X,)=14Y", X, for each n-ary constructor,
o (ver)(®,7) =D+ 7T, (main)(®)=>+1,
o (f)(Xy,---,X,) =max]; X;, for the other function symbols.

So the function is PSPACE-computable.

(Cach push)



5 Further results

We briefly present some new results.

Theorem 25. Functions computed by non confluent programs that admit a
quasi-interpretation of kind 0 and a MPO proof of termination are exactly
PSPACE functions.

This result is quite surprising. Indeed, by adding non-confluence (that
is, non-determinism) to PTIME, we expected to characterise NPTIME. Here,
we reach a step above and characterise PSPACE (actually, we do characterize
NPSPACE, but these two classes are equal). Moreover, at this point, termi-
nation by MPO or LPO doesn’t change the class characterised whereas it has
always been the case otherwise.

Definition 26. A strict quasi-interpretation is a quasi-interpretation where for
any symbols f, one has (f)(X1,...,Xx) > X, for all i <n.

Strict quasi-interpretation still don’t ensure termination.

Theorem 27. The set of functions computed by rewrite systems such that:
e it admits a strict quasi-interpretation,
e it terminates

is exactly the set of PSPACE functions.
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