
Linearization by Program Transformation

Sandra Alves and Mário Florido

University of Porto
Department of Computer Science & LIACC

R. do Campo Alegre 823, 4150-180 Porto, Portugal
e-mail: {sandra,amf}@ncc.up.pt

Abstract. We identify a restricted class of terms of the lambda calculus, here called weak
linear, that includes the linear lambda-terms keeping their good properties of strong nor-
malization, non-duplicating reductions and typability in polynomial time. The advantage
of this class over the linear lambda-calculus is the possibility of transforming general terms
into weak linear terms with the same normal form. We present such transformation and
prove its correctness by showing that it preserves normal forms.

1 Introduction

Linear programs are simple. Concerning implementation issues, for linear programs one may safely
inline the term bound to any variable, or safely update structures in place. Every linear term in
the λ-calculus is β-strongly normalizing (i.e., there is no infinite β-reduction sequence starting
from M), every β-reduction of a linear term is non-duplicating and every closed linear term is
typable in the simple type system [11], thus it is typable in polynomial time.

Here linear programs are modeled by linear λ-terms: λ-terms M such that for each subterm
λx.P of M , x occurs free in P at most once.

Now consider the following question: is there a way of simulating the standard λ-calculus by
the linear λ-calculus? If simulation means transforming the original standard term into a linear
term with the same normal form then it is not possible, in general, to define such transformation.
This is shown by the next simple example: it is not possible to transform the term (in normal
form) λx.xx into a linear term with the same normal form. This happens for any non-linear normal
form.

In this paper we address the following problem: is there a restricted class of λ-terms, with the
same nice properties of the linear λ-calculus and such that we can simulate the standard λ-calculus
by terms of that class?

We show that there is a restriction with these properties, which we here call the weak linear λ-
calculus. A λ-term M is weak linear if in any reduction sequence of M , when there is a contraction
of a β-redex (λx.P)Q, then x occurs free in P at most once, i.e., when a function λx.P is applied,
its formal parameter x must occur at most once in the function body. For example the term λx.xx
is weak linear because it is a non-linear λ-abstraction which is never applied. The term (λx.xx)I
is not weak linear because it has a redex where the function is not linear. For weak linear terms,
only functions that can be applied to an argument in the reduction process are required to be
linear.

Notice that our definition does not refer only to β-redexes (λx.P)Q that are subterms of the
original term M , but to abstractions λx.P that are going to be the function part of a β-redex
in the reduction of M . For example the term M ≡ ((λx.x)(λx.xx))k is not weak linear although
it does not have any subterm of the form (λx.P)Q with x occurring more than once in P . The
problem is that there is a redex of this form (in this case, (λx.xx)k), in a reduction sequence from
M .

The main contributions of this paper are the following:

– A restricted class of λ-terms, here called the weak linear λ-calculus with the same basic prop-
erties of the linear λ-calculus. Here we show that weak linear terms are strong normalizing
and typable in polynomial time.

– A transformation of general terms into weak linear terms preserving normal forms. To deal with
transformation of redexes which will appear during the reduction process (the virtual redexes)
our transformation uses legal paths, [4, 5], because this notion provides a formal characterization
of the intuitive notion of virtual redex. This contribution is also significant for the methodology
it develops. What we set up is a new use of legal paths for complex term transformation.

Let us quickly review the existing literature on the question. A linearization of the λ-calculus was
made by Kfoury [13]. He embedded the λ-calculus into a larger calculus, denoted Λ∧ with a new
notion of reduction, denoted β∧. In the new calculus Λ∧, in every function application, an argument
is used at most once. He also defined the notion of contraction of a term in the new calculus, giving
a λ-term. This last notion gives a way of transforming terms in the new calculus into terms of
the λ-calculus, however, it was not presented a direct definition of a transformation of λ-terms
into terms of the new calculus. The relation between the two calculus was made indirectly saying
that the well-formed terms of the new calculus are the ones for which there is a contraction in the
λ-calculus. Our algorithm is defined directly as a transformation from λ-terms to weak linear terms
and simulating the λ-calculus by a subset of the λ-calculus and not by a non-standard calculus.
The problem was also discussed in [9] where it was established a relation, not a transformation,
between terms typable in an intersection type system and linear terms. Types played a central role
is the definition of this relation and, because the mapping was on the linear λ-calculus, β-normal
forms were not preserved.

The type system used in our paper was used (with minor differences) before in [14] and [1],
as a restricted form of intersection type inference for terms resulting from a simplification process
of arbitrary terms. Finally we remark that our definition of linear term follows [13], but some
people call this class of terms affine, and use the word linear for terms λx.M where x occurs free
exactly once in M . The work presented here was previously presented in [2]. A complete report
with detailed proofs of every theorem can be found in [3].

In the rest of the paper we assume that the reader is familiar with the λ-calculus. A standard
reference for this area is [6]. A good survey on the application of λ-calculus to programming
language technology can be found in [7].

We start in Section 2 with the definition of weak linear lambda terms. In section 3 we present
a type system and a type inference algorithm for the weak linear calculus. In section 4 we present
a transformation from λ-terms into weak linear λ-terms, and prove that it is correct in the sense
that it preserves normal forms. Finally we conclude and outline some future work in section 5.

2 The Weak Linear Lambda Calculus

We start this section by giving some brief notions on λ-calculus.

Definition 1. Let x range over an infinite set of variables. The set of λ-terms, Λ is defined as:

M,N ∈ Λ ::= x | λx.M |MN

As usual the set of λ-terms is quotiented by α-conversion. We use the usual notation of reduction

(λx.M)N →β M [N/x]

As usual, FV (M) denotes the set of free variables of M . In the rest of the paper we follow the
Barendregt variable naming convention, that is, we assume that no variable is bound more than
once, and that it is impossible for a variable to occur both free and bound in a term.

Definition 2. The length of a term M is defined as follows:
− length(x) = 1;
− length(MN) = length(M) + length(N) + 1;
− length(λx.M) = length(M) + 1.

Definition 3 (Weak linear terms). A λ-term M is weak linear iff every redex (λx.P)Q, in the
reduction graph of M (consisting of every reduction sequence from M), is such that x occurs at
most once in P .

Definition 4. If M is strongly normalizable, the maximal depth of a derivation from M is called
the reduction depth of M , and denoted depth(M).

Lemma 1. For weak linear λ-terms, contracting a redex reduces the length of a term.

Corollary 1 (Strong normalization). Let M be a weak linear λ-term. Then depth(M) ≤
length(M). Thus M is strongly normalizable.

3 Type Inference for the Weak Linear Lambda Calculus

Here we present a type system that types every weak linear term. Note that closed linear terms
are typed in the Simple Type System [12], but the same does not happen with weak linear terms.
In this case functions which are never applied may not be linear. For example the term λx.xx is
weak linear and it is not typable in the Simple Type System. The type system described in this
section, here called TW type system, is based on intersection types [8]. Note that the previous
term, λx.xx, is typed by intersection types with type ((α → β) ∩ α) → β. We use intersections
only to type abstractions, and when typing applications the function part cannot have a domain
denoted by an intersection. This is enough to type every weak linear term keeping the decidability
of the type inference problem. The type system can also be used to establish decidability for weak
linear terms.

3.1 A Type System for Weak Linear Terms

Definition 5. An infinite sequence of type-variables is assumed to be given. Intersection types are
expressions defined thus:

1. each type-variable is a type;
2. if σ and τ1 . . . τn are types (for n ≥ 1) then (τ1 ∩ · · · ∩ τn → σ) is a type.

In the previous definition ∩ is assumed to be an associative, commutative and idempotent operator.

Definition 6. A type environment is a finite set of pairs of the form x : τ , where x is a term
variable and τ is a type.

Definition 7. The TW system is defined by:

VAR {x : σ} ` x : σ

ABS-I
A ∪ {x : τ1, . . . , x : τn} `M : σ
A ` λx.M : τ1 ∩ · · · ∩ τn → σ

if x ∈ FV(M) (a)

ABS-K
A `M : σ

A ` λx.M : τ → σ
if x 6∈ FV(M)

APP
A1 `M : τ → σ A2 ` N : τ

A1 ∪ A2 `MN : σ

(a) If x : τ1, . . . , x : τn are all and nothing but statements about x on which A ∪ {x : τ1, . . . , x :
τn} `M : σ depends. The symbol ∪ denotes the usual set union operation.

M : σ is derivable from an environment A in the TW type system, notation A `M : σ, if and
only if it is obtained using the previous rules. Note that in TW intersections only appear in the
ABS-I rule, thus in type derivations, intersection types can only appear in the types of abstractions
which are not applied.

Example 1. In system TW we have ` (λx.xx) : (α ∩ (α → β)) → β but (λx.xx)(λx.x) is not
typable.

Theorem 1. Every weak linear term M is typable in system TW .

Note that the converse does not hold. For example, (λfx.f(fx))(λx.x) is typable but it is not
weak linear.

3.2 A Type Inference Algorithm

The type inference algorithm presented here is a generalization of the Hindley’s algorithm for
Simple Types ([10], [12]). A brief sketch of a similar system was presented before in [14]. The
main difference to the Simple Type System is that type declarations for the same variable in the
environment may not be unique, and abstractions are typable even when types of their formal
parameter do not unify.

Definition 8. Let UNIFY be Robinson’s unification algorithm [16]. Given a λ term M , we define
the function I(M) = (Γ, τ), where Γ is a type environment and τ is a type, thus:
1. If M = x then I(M) = ({x : α}, α) where α is a type variable.
2. If M = λx.N then:

− If I(N) = (Γ ′, τ) and x /∈ Subjects(Γ ′), then I(λx.N) = (Γ ′, α → τ) where α is a new
type variable.

− If I(N) = (Γ ′, τ) and Γ ′(x) = {τ1, . . . , τn} , then I(λx.N) = (Γ ′
x, τ1 ∩ · · · ∩ τn → τ).

3. If M = M1M2 then I(M) = (S(Γ1 ∪ Γ2), S(α)) where:
− I(M1) = (Γ1, τ1);
− I(M2) = (Γ2, τ2);
− S = UNIFY(τ1, τ2 → α) (α is a new type variable).

Theorem 2.
1. I(M) = (Γ, σ) if and only if M is typable in system TW .
2. I(M) terminates in time polynomial in the size of M .

Theorem 3. Give a λ-term M it is decidable to know if M is weak linear.

4 Transformation into Weak Linear Terms

Let us see what means to transform a λ-term into a weak linear term. Consider the following
example: suppose one wants to define the weak linear version of the term (λxy.xy)(λz.zz)(λw.w).
In this term the only variable which occurs more than once is z. Thus we must linearize (λz.zz) to
get the term (λz1z2.z1z2). But (λz.zz) will have y as an argument after one reduction step. Thus
y in (λxy.xy) has to be copied and we get the term:

(λxy.xyy)(λz1z2.z1z2)(λw.w)

Now, a variable which occurred once in the original term occurs twice in the new term, thus the
linearization process has to go on, linearizing (λxy.xyy) to obtain (λxy1y2.xy1y2). Notice that y
will be replaced by λw.w in the original version of the term, thus, as y was replaced by two new
parameters, we have to duplicate (λw.w) in the resulting term to get the final term:

(λxy1y2.xy1y2)(λz1z2.z1z2)(λw.w)(λw.w)

Notice that y will be replaced by λw.w after one reduction step. Thus the transformation algorithm
has to know in advance that subterms of the form (λx.M) and N are going to be the function
and argument part of a redex in the future, i.e. (λx.M)N is a virtual redex. To deal with this
complicated issue we make use of legal paths. Legal paths were introduced by Asperti and Laneve
[5] as a characterization based on paths of Lévy’s redex families in the context of optimal reductions
for the λ-calculus. They provide a static characterization of virtual redexes and revealed to be quite
useful for program transformation. As far as we know this is the first work relating the two subjects.

4.1 The Labeled λ-Calculus and Legal Paths

The Labeled λ-Calculus The labeled λ-calculus is an extension of the λ-calculus, proposed by
Lévy in [15]. In the rest of the paper, we will use x, y, z, . . . to range over variables, a, b, c, . . . to
range over atomic labels, l, l1, l2, . . . to range over labels, and ϕ, ψ, φ, . . . to range over paths.

Definition 9. Let a range over an infinite set of atomic labels. The set of labels, L is defined as:

l1, l2 ∈ L ::= a | l1l2 | l1 | l2

Definition 10. Let x range over an infinite set of variables V, and l over an infinite set of labels
L. The set of labelled λ-terms, ΛL

V
is defined as:

M,N ∈ ΛL
V ::= xl | (MN)l | (λx.M)l

Labeled β-reduction is the following rule (note that l0 · (T)l1 = (T)l0l1):

((λx.M)l0N)l1 → l1 · l0 ·M [l0 ·N/x]

where the label l0 is the degree of the redex ((λx.M)l0N)l1

Labels provide an approach to the notion of computation as a travel along a path. Note that
every label trivially defines a path in the syntactic tree of the term.

Definition 11. If l is a label of an edge generated along some reduction from M , the path of l in
M is inductively defined as follows:

path(a) = a
path(l1l2) = path(l1) · path(l2)

path(l) = path(l)
path(l) = (path(l))r

where ϕ1 · ϕ2 means concatenation of the two paths (in the following we will sometimes omit ·),
and ϕr is the path obtained by reversing ϕ.

Example 2. M = ((λx.((xe(λy.(yhyi)g)f)dvj)c)b(λw.(λz.(wn(wpzq)o)m)l)k)a has the graph repre-
sentation given by Figure 1. a

@
���
b

λx
c

@

��
d

@@
j

v@

��
e

x
@@

f

λy
g

@

��
h

y
@@

i

y

HHH
k

λw

l

λz
m

@

��
n

w
@@

o

@

��
p

w
@@

q

z

Fig. 1. Labeled λ-term

Legal Paths Different degrees of redexes correspond to different paths in the original term.
Legal paths are a characterization of paths yield by degrees. Legal paths are obtained by suitably
constraining another type of paths which are the well balanced paths (wbp). (All the definitions
and results concerning legal paths, presented in this sub-section, can be found in [5].)

Definition 12. Well balanced paths are inductively defined in the following way (see Figure 2):

– (base case)The function edge of any application, is a well balanced path.
– (λ-composition) Let ψ be a wbp of type @-x whose ending variable is bound to a λ-node c

and ϕ be a wbp of type @-λ coming into c. Then ψ.(ϕ)r.u is a wbp, where u is the argument
edge of the initial node of ϕ;

– (@-composition)Let ψ be a wbp of type @-@ ending into a node d and ϕ be of type @-λ
leading from d to some λ-node c. Then ψ.ϕ.u is a wbp, where u outgoes c towards its body.

@u @

@

j
u

y

l

@

@

j

u

y

l

Fig. 2. Well balanced paths

The type @-? where ? can be λ, @ or x (variable) is determined by the type of the node where
the wbp ends.

Example 3. The set of wbp (of the form path : type) of the λ-term M of Figure 1 is given by:
Initial paths:

{b : @-λ, d : @-@, e : @-x, h : @-x, n : @-x, p : @-x}

Applying (λ-composition) to the initial paths, and (@-composition) to the new paths we get,

{e · b · k : @-λ, d · e b k · l : @-λ}

Again by (λ-composition) and (@-composition) we get

{n · k b e · f : @-λ, p · k b e · f : @-λ}

After one more iteration
{h · f e b k n · o : @-x, h · f e b k p · q : @-x}

Finally
{h f e b k p q · l k b e d · j : @-x}

Thus, the set of wbp of type @-λ is given by:

{b : @-λ, e · b · k : @-λ, d · e b k · l : @-λ, n · k b e · f : @-λ, p · k b e · f : @-λ}

Note that, if we imagine that bound variables (x) are explicitly connected to their binders (λx),
these paths are actual paths in the graph representation of M .

We now present two other kinds of paths in a term needed to define legal paths.

Definition 13. Let ϕ be a wbp.

– (v-cycles) Let v be the label of a variable edge. A v-cycle (over v) is a cyclic subpath of the
form vλ(ϕ)r@ψ@ϕλv where ϕ is a wbp and ψ is a @-cycle.

– (@-cycles) A @-cycle, over an @ node with argument subterm N , is a subpath ψ that starts
and ends with the argument edge of the @-node, and composed of subpaths internal to the
argument N and v-cycles over free variables of N . A particular case of @-cycle is a cycle
starting from and ending to the argument edge p of a @-node (the negative auxiliary port), and
internal to the argument N of the application (i.e. not traversing variables which are free in
N).

Example 4. The wbp h f e b k p q l k b e d j of type @-x of example 3 has a v-cycle eλb@k p q l k@bλe
and a @-cycle @k p q l k@.

Proposition 1. Let ϕ be a wbp with a @-cycle @ψ@. Then ϕ can be uniquely decomposed as

ζ1λζ2@ψ@(ζ3)
rλζ4

where both ζ2 and ζ3 are wbp’s. The paths ζ2 and ζ3 are called the call and return paths of the
@-cycle ψ. The last label of ζ1 and the first label of ζ4 are named the discriminants of the call and
return paths, respectively.

Definition 14. A wbp is a legal path if and only the call and return paths of any @-cycle are
one the reversed of the other and their discriminants are equal.

Example 5. The wbp’s of example 3 are all legal. Notice that in the only path having a @-cycle
h f e b k p q l k b e d j, the call and return paths of the cycle are both b (thus one is the reversed of
the other), and the discriminants are both e.

Theorem 4. Every path yield by the degree of a redex is a legal path.

Theorem 5. For any legal path ϕ of type @-λ in a term M , there exists a degree l of a redex
originated along some reduction of M such that path(l) = ϕ.

4.2 Term Transformation

Here we present a transformation from arbitrary λ-terms into weak linear terms. We first present
some lemmas needed when showing the correctness of the transformation.

Lemma 2. M is a strongly normalizable term, iff the set LP of legal paths of type @-λ in M is
a finite set.

Definition 15. Let M be a λ-term, LP be the set of legal paths of M , and S1 the paths corre-
sponding to redexes in M . We define the chain of dependences between legal paths of type @-λ in
LP as S1 � S2 � · · · � Sn � · · · such that the legal paths in Si are build by λ-composition from
the paths in the sets S1, . . . , Si−1 and @-composition from the paths in Si.

Definition 16. Let M be a λ-term, and LP be the set of legal paths of M . The function

next non linear(M)

returns a pair of labels (l, k), where l is the abstraction node where the next non linear legal path,
of type @-λ, in the chain of legal paths built from LP, ends and k is the function edge of the
application node where it starts. If every legal path is linear, next non linear(M) =⊥ .

Basically this function returns the labels which identify the next non-linear virtual redex.

Example 6. For the λ-term M in Figure 1, with the set LP , of legal paths of type @-λ, given in
example 3 the chain of legal paths is {b} � {e · b · k, d · e b k · l} � {n · k b e · f, p · k b e · f}, thus
the result of next non linear(LP) is (k, e).

Lemma 3. If M is a λ-term and (l, k) = next non linear(M), then the only application node such
that there is a legal path ϕ of type @-λ ending in l is the application with function edge, labeled k.

Example 7. Consider the chain of legal paths of type @-λ in example 6. We have next non linear(M)
= (k, e), and the application node whose function edge is e is the only application node for which
there is a legal path ϕ ending in k.

Definition 17 (one step of the transformation). Let M be a λ-term. We define the term
L(M), that results from linearizing the next non linear abstraction (λx.P)l of M . Let n be the
number of occurrences of x in P :

L(M) =

{

M if next non linear(M) =⊥

Ml otherwise

where

– (l, k) = next non linear(M);
– M ′ = replace(l,M), where replace(l,M) replaces (λx.P)l in M by (λx1. . . . (λxn.P

∗)ln · · ·)l1 ,
and P ∗ results from replacing the ith occurrence of x in P by the fresh variable xi (i = 1, . . . , n).

– Ml = replace n(k, n,M ′), where replace n(k, n,M ′) is the function that replaces the term
(QkNm)j by ((· · · (Qk1 Nm1) · · ·)knNmn)j

︸ ︷︷ ︸

n times

(see Figure 3).

@

N

k m

j

l

l

P

x

j

@

N
kn

mn

@

N
k1

m1

@

N

l1

l

P*

x1

ln

lxn

Fig. 3. Expansion of an abstraction

Remark: Note that the labels in each copy of N are such that, if N has a label c in M , there is a
label ci in the ith copy of N in Ml.
Example 8. Let M be the λ-term in Figure 1. The term that results from expanding the first non
linear path (e · b · k) in M , L(M) is given by Figure 4.

Definition 18 (Transformation into weak linear terms). Let M be a λ-term, and LP the
set of legal paths in M . We define the following function:

T (M) =

{

M if all linear(M)

T (L(M)) otherwise

The function all linear(M) returns true if all the legal paths of type @-λ in M , end in a linear
abstraction, and false otherwise.

a

@
���
b

λx
c

@

��
d

@@
j

v@

�
��

e2

@

��
e1

x
@@
f1

λy
g1

@

��
h1

y
@@

i1

y

@
@@

f2

λy
g2

@

��
h2

y
@@

i2

y

HHH
k1

λw1

k2

λw2

l

λz
m

@

��
n

w1

@@
o

@

��
p

w2

@@
q

z

Fig. 4. Term M , of Figure 1, after one step of transformation

Example 9. Let ∆ = λy.yy and D = λy1y2.y1y2. Let M = (λx.x∆v)(λwz.w(wz)) be the term
represented in Figure 1. Let us follow the transformation in some detail. We will omit the labels
of the terms, except the ones needed to follow the example. We first linearize the abstraction
(λwz.w(wz))k and duplicate the argument of xe corresponding to the first non-linear abstraction
on the chain of paths in example 6, (e · b · k), to get the term in Figure 4.

T (M) = T ((λx.x∆f1∆f2v)(λw1.(λw2z.w1(w2z))
k2)k1)

After one more step, linearizing ∆f1 , we get:

T ((λx.xD∆v)(λw1w2z.w1(w2z)(w2z)))

Now the abstractions labeled by k2 and l in (λw2.(λz.w1(w2z)(w2z))
l)k2 which were linear, became

non-linear thus, after a one more step we get:

T ((λx.xD∆∆v)(λw1w2w3z.w1(w2z)(w3z)))

Linearizing λz.w1(w2z)(w3z) we get

T ((λx.xDf1∆f21∆f22vv)(λw1w2w3z1z2.w1(w2z1)(w3z2)))

The next non-linear abstraction is the copy of ∆ labeled by f21, thus we get:

T ((λx.xDD∆vv)(λw1w2w3z1z2.w1(w2z1z1)(w3z2)))

The abstraction (λz1z2.w1(w2z1z1)(w3z2))) becomes non-linear, thus, after a few more steps, we
get:

= T ((λx.xDD∆vvv)(λw1w2w3z1z3z2.w1(w2z1z3)(w3z2)))
= T ((λx.xDDDvvvv)(λw1w2w3z1z3z2z4.w1(w2z1z3)(w3z2z4)))
= (λx.xDDDvvvv)(λw1w2w3z1z2z3z4.w1(w2z1z2)(w3z3z4))

Now all the legal paths of type @-λ are linear, thus the transformation terminates. Note that
nf(M) = (vv)(vv) = nf(T (M)). As we shall prove latter, this happens for every term.

4.3 Correctness

Here we show that the transformation preserves normal forms. This relies on the next lemma,
which basically, relates the legal paths of the original term and of the transformed term.

Lemma 4. If L(M) = ML, let (l, k) = next non linear(M) and N the subterm argument of the
application node having k as function edge, then the set PL of legal paths of ML is such that:

1. If ϕ is a legal path internal to N , then ϕi (i = 1 . . . n) is a legal path in the ith copy of N in
ML;

2. If ϕ is a legal path with a @-cycle in N (starting and ending outside N), then ϕ′ is a legal
path with a cycle in a copy of N in ML;

3. If ϕ is a legal path not internal but starting and ending in N , then ϕ′ is a legal path starting
and ending in a copy of N in ML;

4. If ϕ is a legal path starting/ending in N , then ϕ′ is a legal path starting/ending in a copy of
N in ML, and ending/starting in the same edge;

5. If ϕ = kψl is the legal path in M of type @-λ ending in (λx.P)l, then in ML, there are n
paths of type @-λ ending respectively in (λx1 . . . xn.P

∗)l1 , (λx2 . . . xn.P
∗)l2 , . . . , (λxn.P

∗)ln ,
and starting respectively in k1, k2, . . . , kn, (n ≥ 1);

6. If ϕ is a legal path in M of any type, external to N , then there is a legal path of the same type
in ML, starting and ending in the same edges.

Example 10. Let M be the labeled term in Figure 1, and ML (the term obtained from M after
one step of transformation) in Figure 4. Given the legal path of M , h, we have the corresponding
legal paths h1 and h2 in ML. This illustrates point 1 of lemma 4. For point 5 of the same lemma,
notice that given the legal path e b k of M , we have two legal paths e1 b k1 and e2 e1 b k1 k2 is ML.

Theorem 6. If T (M) = N , then N is weak linear.

Lemma 5. If L(M) = N , and both N and M have a normal form, then nf(M) = nf(N).

Theorem 7. If T (M) = N , then nf(M) = nf(N).

Theorem 8. If T (M) = N , then M is strongly normalizable.

Note that the transformation may not terminate. In every example tested, the non-termination of
T (M) arises when the reduction of M itself may not terminate.

Example 11. Let ∆ = λx.xx, D = λx1x2.x1x2, and Ω = ∆∆. We have:
T (Ω) = T (D∆∆) = T (λx1x2.x1x2x2)D∆) = T (λx1x2x3.x1x2x3)D∆∆) =

= T (λx1x2x3.x1x2x3x3)DD∆) = T (λx1x2x3x4.x1x2x3x4)DD∆∆) = · · ·

Since the set of legal paths of Ω is not finite, T (Ω) never terminates. This is somehow expected
since, apparently, the only cause of non-termination of the transformation process is the exis-
tence of an infinite number of legal paths (which can only happen when the term is not strongly
normalizable).

5 Final Remarks

In this paper we present a transformation of general terms into weak linear terms. It is necessary
to find out sufficient conditions for the initial terms, under which we can guarantee that the
transformation terminates. Based on what we said at the end of section 4, we conjecture that
our transformation terminates if and only if the term is strongly normalizable. The left-to-right
implication is proved in Theorem 8. The right-to-left implication requires a more detailed analysis
of the interaction between reductions of the initial term and of the transformed term, and it is left
for future work.

Acknowledgements We thank Laurent Regnier for his helpful comments on some aspects of legal
paths. The work presented in this paper has been partially supported by funds granted to LIACC
through the Programa de Financiamento Plurianual, Fundação para a Ciência e Tecnologia and
Programa POSI.

References

1. Sandra Alves and Mario Florido. On the relation between rank 2 intersection types and simple types.
In Joint Conference on Declarative Programming (AGP’2002), 2002.

2. Sandra Alves and Mario Florido. Linearization by program transformation. In ”Logic Based Program
Synthesis and Transformation - LOPSTR 2003, Revised Selected Papers”, LNCS, 2003.

3. Sandra Alves and Mario Florido. Linearization by program transformation. Technical report, DCC-FC,
LIACC, University of Porto, 2003. (available from www.dcc.fc.up.pt/∼sandra/papers/report2003.ps).

4. Andrea Asperti, Vincent Danos, Cosimo Laneve, and Laurent Regnier. Paths in the lambda-calculus.
In Logic in Computer Science, pages 426–436, 1994.

5. Andrea Asperti and Cosimo Laneve. Paths, computations and labels in the lambda-calculus. Theo-
retical Computer Science, 142(2):277–297, 1995.

6. Henk Barendregt. The Lambda Calculus. Its Syntax and Semantics, volume 103 of Studies in Logic
and the Foundations of Mathematics. North-Holland, 1984.

7. Henk Barendregt. The impact of the lambda calculus. Bulletin of Symbolic Logic, 3(2):181–215, 1997.
8. M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the λ-calculus.

Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.
9. Mario Florido and Luis Damas. Linearization of the lambda-calculus and its relation with intersection

type systems. To appear in Journal of Functional Programming, 2004.
10. J. R. Hindley. The principal type-scheme of an object in combinatory logic. Trans. American Math.

Soc., 146:29–60, 1969.
11. J. R. Hindley. BCK-Combinators and linear lambda-terms have types. Theoretical Computer Science,

64(1):97–105, 1989.
12. J. R. Hindley. Basic Simple Type Theory. Cambridge University Press, 1997.
13. Assaf J. Kfoury. A linearization of the lambda-calculus. Journal of Logic and Computation, 10(3),

2000.
14. Assaf J. Kfoury, Harry G. Mairson, Franklyn A. Turbak, and J. B. Wells. Relating typability and

expressiveness in finite-rank intersection type systems. In International Conference on Functional
Programming, pages 90–101, 1999.

15. J.J. Lévy. Réductions correctes et optimales dans le lambda calcul. PhD thesis, Université Paris VII,
1978.

16. J. A. Robinson. A machine-oriented logic based on the resolution principle. J. Assoc. for Computing
Machinery, 12:23–41, 1965.

