
BRICS APPSEM II – April 16, 2004

A Functional Correspondence between

Monadic Evaluators and Abstract Machines

for Languages with Computational Effects

Mads Sig Ager (mads@brics.dk)
Olivier Danvy (danvy@brics.dk)

Jan Midtgaard (jmi@brics.dk)
BRICS, University of Aarhus, Denmark

1

On the computational content
of semantic specifications.

2

• Denotational semantics: a compositional

evaluation function (e.g., from expressions

and environments to expressible values).

• Big-step operational semantics: a relation

(e.g., between expressions, environments,

and expressible values).

• Small-step operational semantics: a

transition function (from state to state).

3

Semantic specifications as
computational objects.

4

• Denotational semantics: a compositional

evaluation function – an evaluator.

• Big-step operational semantics: a relation –

a logic program in general, and a functional

program in particular.

• Small-step operational semantics: an

abstract machine.

5

Semantic specifications
as data objects.

6

Semantic specifications
as data objects.

Here: as the object of program transformations.

7

Example of program transformations

• lambda lifting / lambda dropping

• closure conversion / Church encoding

• CPS transformation / DS transformation

• defunctionalization / refunctionalization

• data-stack introduction / elimination

8

Domain of discourse: the λ-calculus

Why: → Idealized programming language.→ Forty years of experience

to draw from and reflect on.

9

The point (already made last year)

evaluator

closure conversion (to make it first order)

CPS transformation (to make it sequential)

defunctionalization (to make it first order)
��

abstract machine

10

Example in direct style

(* fac : int -> int *)

fun fac 0

= 1

| fac n

= n * (fac (n - 1))

fun main n

= fac n

11

Example in CPS

(* fac : int * (int -> int) -> int *)

fun fac (0, k)

= k 1

| fac (n, k)

= fac (n - 1, fn v => k (n * v))

fun main n

= fac (n, fn a => a)

12

The function space to defunctionalize

(* fac : int * (int -> int) -> int *)

fun fac (0, k)

= k 1

| fac (n, k)

= fac (n - 1, fn v => k (n * v))

fun main n

= fac (n, fn a => a)

13

The constructors

(* fac : int * (int -> int) -> int *)

fun fac (0, k)

= k 1

| fac (n, k)

= fac (n - 1, fn v => k (n * v))

fun main n

= fac (n, fn a => a)

14

The consumers

(* fac : int * (int -> int) -> int *)

fun fac (0, k)

= k 1

| fac (n, k)

= fac (n - 1, fn v => k (n * v))

fun main n

= fac (n, fn a => a)

15

The defunctionalized continuation

datatype cont = C0

| C1 of cont * int

fun apply (C0, v)

= v

| apply (C1 (k, n), v)

= apply (k, n * v)

16

Factorial in CPS, defunctionalized

fun fac (0, k)

= apply (k, 1)

| fac (n, k)

= fac (n - 1, C1 (k, n))

fun main n

= fac (n, C0)

17

Correctness

By structural induction on n,

using a logical relation over

the original continuation and

the defunctionalized continuation.

18

Factorial, defunctionalized

fun fac (0, k)

= apply (k, 1)

| fac (n, k)

= fac (n - 1, C1 (k, n))

fun main n

= fac (n, C0)

19

Factorial, as a transition system

fun fac (0, k)

= apply (k, 1)

| fac (n, k)

= fac (n - 1, C1 (k, n))

fun main n

= fac (n, C0)

20

Factorial, as a transition system

n ⇒ 〈 n, C0 〉fac

〈 0, k 〉fac ⇒ 〈 k, 1 〉app

〈 n, k 〉fac ⇒ 〈 n − 1, C1(n,k) 〉fac

〈 C1(n,k), v 〉app ⇒ 〈 k, n × v 〉app

〈 C0, v 〉app ⇒ v

21

Last year’s experiment #1: CBN

canonical CBN evaluator for λ-terms

closure conversion

CPS transformation

defunctionalization
��

abstract machine

22

Last year’s experiment #1: CBN

canonical CBN evaluator for λ-terms

closure conversion

CPS transformation

defunctionalization
��

Krivine’s abstract machine

23

Krivine’s abstract machine

The abstract machine

of theoreticians.

24

Last year’s experiment #2: CBV

canonical CBV evaluator for λ-terms

closure conversion

CPS transformation

defunctionalization
��

abstract machine

25

Last year’s experiment #2: CBV

canonical CBV evaluator for λ-terms

closure conversion

CPS transformation

defunctionalization
��

Felleisen et al.’s CEK abstract machine

26

The CEK abstract machine

The simplest abstract machine

of programming-language people.

27

Significance of the result

Krivine’s machine and the CEK machine:

• The two best-known abstract machines

for the λ-calculus.

• Developed and presented independently.

28

Other evaluators and abstract machines

• SECD, CLS, CAM, VEC, etc.

• call by need

• Featherweight Java, propositional Prolog,

etc.

The correspondence holds.

29

Related work (1/2)

• Reynolds: “Definitional Interpreters, etc.”

• ...much, much work,

including textbooks such as

“Essentials of Programming Languages”

30

Related work (2/2)

• Graunke, Findler, Krishnamurthi, and

Felleisen: “Automatically Restructuring

Programs for the Web” (ASE 2001)

• Schmidt: “State Transition Machines for

Lambda-Calculus Expressions” (SDCG

1980)

31

This work

We build on Moggi’s insight

as embodied in Wadler’s interpreters.

One generic interpreter,

parameterized by a monad.

The style is in the monad.

32

The point

monadic evaluator + monad
inlining (to make it ‘styled’)

closure conversion

CPS transformation

defunctionalization��
abstract machine

33

Several detailed examples

In the paper:

• The identity monad.

Result: the CEK machine.

• A lifted state monad.

Result: the CEK machine

with error and state.

34

Stack inspection

• A security mechanism to allow code
with different levels of trust to interact
in the same execution environment.

• Before execution, the source code
is annotated with permissions.

• During execution, the call stack is inspected
to check whether the required permissions
are available.

35

Stack inspection
and proper tail recursion

Clements and Felleisen, ESOP 2003:

properly tail recursive stack inspection

with the CM machine.

36

Our observation

• Stack inspection can be characterized as a

lifted state monad:

type ’a monad

= permission_table list

-> (’a * permission_table list) lift

• The functional correspondence applies.

See Section 6 in the article.

37

A simpler monad
for stack inspection

Only the top-most permission table is updated:

type ’a monad

= permission_table * permission_table list

-> (’a * permission_table) lift

See Section 7 in the article.

38

Compound monads:
stack inspection + exceptions

See the BRICS tech report.

39

Conclusion: What

• The functional correspondence is

compatible with monads.

• It makes it possible to mechanically construct

abstract machines for languages with effects.

interpreter inter // abstract
machinederivation

oo

40

Conclusion: How

Standard program transformations:

• Closure conversion.

• Data-stack introduction.

• CPS transformation.

• Defunctionalization.

41

Conclusion: How much

• Known, and not home-grown, machines.

• Variants of known machines.

• New machines.

42

Conclusion: How much

• Evaluation.

• Normalization.

• Logic programming.

• Imperative programming.

• Object-oriented programming.

43

Thank you.

44

Krivine’s machine
and the CEK machine

• The two best-known abstract machines

for the λ-calculus.

• Developed and presented independently.

45

A “Wadlerian” classification

• Krivine: the logician.

• Felleisen: the computer scientist.

46

Limits of the classification

• Reynolds: the theoretician (CBN).

• Landin: the programmer (CBV).

47

A point remains, however

• Discovery (KAM).

• Invention (CEK).

48

Flashback

John Reynolds’s warning

about evaluation-order independence.

49

A canonical evaluator

datatype term

= IND of int (* de Bruijn index *)

| ABS of term

| APP of term * term

datatype expval

= FUN of denval -> expval

withtype denval = expval

50

fun eval (IND n, e)

= List.nth (e, n)

| eval (ABS t, e)

= FUN (fn v => eval (t, v :: e))

| eval (APP (t0, t1), e)

= let val (FUN f) = eval (t0, e)

in f (eval (t1, e))

end

51

John Reynolds’s warning (1972)

Beware of the evaluation order

of the meta-language:

• Call by name yields call by name.

• Call by value yields call by value.

52

canonical evaluator

closure conv.
��

CBN
CPS transf.

xxqqqqqqqqqqqqqqqqqqq CBV
CPS transf.

$$JJJJJJJJJJJJJJJJJ

defunct.

��

defunct.

��
Krivine’s machine CEK machine

53

Consequence

Krivine’s machine and the CEK machine are

not just discovered and invented — they are

two sides of the same standard coin.

54

canonical evaluator

closure conv. (1964)

��
CBN

CPS transf.
(1975)

xxqqqqqqqqqqqqqqqqqqq CBV
CPS transf.

$$JJJJJJJJJJJJJJJJJ

defunct. (1972)
��

defunct.
��

Krivine’s machine
(1985)

CEK machine
(1986)

55

Piet Hein’s gentle reminder: T.T.T.

Put up in a place

where it’s easy to see

the cryptic admonishment

T.T.T.

When you feel how depressingly

slowly you climb,

it’s well to remember that

Things Take Time.

56

Models of abstract machines

• Eval-apply (CEK, etc.)

• Push-enter (KAM, etc.)

57

Models of abstract machines

• Eval-apply (CEK, etc.)

• Push-enter (KAM, etc.)

They appear naturally.

58

Call by need
(built-in dynamic programming)

Call by need: Call by name +

heap of updatable thunks.

Result: A host of known implementation

techniques and then some.

(see BRICS RS-04-03)

59

