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On the computational content
of semantic specifications.
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• Denotational semantics: a compositional

evaluation function (e.g., from expressions

and environments to expressible values).

• Big-step operational semantics: a relation

(e.g., between expressions, environments,

and expressible values).

• Small-step operational semantics: a

transition function (from state to state).
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Semantic specifications as
computational objects.
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• Denotational semantics: a compositional

evaluation function – an evaluator.

• Big-step operational semantics: a relation –

a logic program in general, and a functional

program in particular.

• Small-step operational semantics: an

abstract machine.
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Semantic specifications
as data objects.
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Semantic specifications
as data objects.

Here: as the object of program transformations.
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Example of program transformations

• lambda lifting / lambda dropping

• closure conversion / Church encoding

• CPS transformation / DS transformation

• defunctionalization / refunctionalization

• data-stack introduction / elimination
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Domain of discourse: the λ-calculus

Why: → Idealized programming language.→ Forty years of experience

to draw from and reflect on.
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The point (already made last year)

evaluator

closure conversion (to make it first order)

CPS transformation (to make it sequential)

defunctionalization (to make it first order)
��

abstract machine
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Example in direct style

(* fac : int -> int *)

fun fac 0

= 1

| fac n

= n * (fac (n - 1))

fun main n

= fac n
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Example in CPS

(* fac : int * (int -> int) -> int *)

fun fac (0, k)

= k 1

| fac (n, k)

= fac (n - 1, fn v => k (n * v))

fun main n

= fac (n, fn a => a)
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The function space to defunctionalize

(* fac : int * ( int -> int ) -> int *)

fun fac (0, k)

= k 1

| fac (n, k)

= fac (n - 1, fn v => k (n * v))

fun main n

= fac (n, fn a => a)
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The constructors

(* fac : int * ( int -> int ) -> int *)

fun fac (0, k)

= k 1

| fac (n, k)

= fac (n - 1, fn v => k (n * v) )

fun main n

= fac (n, fn a => a )
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The consumers

(* fac : int * ( int -> int ) -> int *)

fun fac (0, k)

= k 1

| fac (n, k)

= fac (n - 1, fn v => k (n * v) )

fun main n

= fac (n, fn a => a)
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The defunctionalized continuation

datatype cont = C0

| C1 of cont * int

fun apply (C0, v)

= v

| apply (C1 (k, n), v)

= apply (k, n * v)
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Factorial in CPS, defunctionalized

fun fac (0, k)

= apply (k, 1)

| fac (n, k)

= fac (n - 1, C1 (k, n) )

fun main n

= fac (n, C0 )
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Correctness

By structural induction on n,

using a logical relation over

the original continuation and

the defunctionalized continuation.
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Factorial, defunctionalized

fun fac (0, k)

= apply (k, 1)

| fac (n, k)

= fac (n - 1, C1 (k, n))

fun main n

= fac (n, C0)

19



Factorial, as a transition system

fun fac (0, k)

= apply (k, 1)

| fac (n, k)

= fac (n - 1, C1 (k, n))

fun main n

= fac (n, C0)
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Factorial, as a transition system

n ⇒ 〈 n, C0 〉fac

〈 0, k 〉fac ⇒ 〈 k, 1 〉app

〈 n, k 〉fac ⇒ 〈 n − 1, C1(n,k) 〉fac

〈 C1(n,k), v 〉app ⇒ 〈 k, n × v 〉app

〈 C0, v 〉app ⇒ v
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Last year’s experiment #1: CBN

canonical CBN evaluator for λ-terms

closure conversion

CPS transformation

defunctionalization
��

abstract machine
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Last year’s experiment #1: CBN

canonical CBN evaluator for λ-terms

closure conversion

CPS transformation

defunctionalization
��

Krivine’s abstract machine
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Krivine’s abstract machine

The abstract machine

of theoreticians.
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Last year’s experiment #2: CBV

canonical CBV evaluator for λ-terms

closure conversion

CPS transformation

defunctionalization
��

abstract machine
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Last year’s experiment #2: CBV

canonical CBV evaluator for λ-terms

closure conversion

CPS transformation

defunctionalization
��

Felleisen et al.’s CEK abstract machine
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The CEK abstract machine

The simplest abstract machine

of programming-language people.
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Significance of the result

Krivine’s machine and the CEK machine:

• The two best-known abstract machines

for the λ-calculus.

• Developed and presented independently.
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Other evaluators and abstract machines

• SECD, CLS, CAM, VEC, etc.

• call by need

• Featherweight Java, propositional Prolog,

etc.

The correspondence holds.
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Related work (1/2)

• Reynolds: “Definitional Interpreters, etc.”

• ...much, much work,

including textbooks such as

“Essentials of Programming Languages”
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Related work (2/2)

• Graunke, Findler, Krishnamurthi, and

Felleisen: “Automatically Restructuring

Programs for the Web” (ASE 2001)

• Schmidt: “State Transition Machines for

Lambda-Calculus Expressions” (SDCG

1980)
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This work

We build on Moggi’s insight

as embodied in Wadler’s interpreters.

One generic interpreter,

parameterized by a monad.

The style is in the monad.
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The point

monadic evaluator + monad
inlining (to make it ‘styled’)

closure conversion

CPS transformation

defunctionalization��
abstract machine
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Several detailed examples

In the paper:

• The identity monad.

Result: the CEK machine.

• A lifted state monad.

Result: the CEK machine

with error and state.
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Stack inspection

• A security mechanism to allow code
with different levels of trust to interact
in the same execution environment.

• Before execution, the source code
is annotated with permissions.

• During execution, the call stack is inspected
to check whether the required permissions
are available.
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Stack inspection
and proper tail recursion

Clements and Felleisen, ESOP 2003:

properly tail recursive stack inspection

with the CM machine.
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Our observation

• Stack inspection can be characterized as a

lifted state monad:

type ’a monad

= permission_table list

-> (’a * permission_table list) lift

• The functional correspondence applies.

See Section 6 in the article.
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A simpler monad
for stack inspection

Only the top-most permission table is updated:

type ’a monad

= permission_table * permission_table list

-> (’a * permission_table) lift

See Section 7 in the article.
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Compound monads:
stack inspection + exceptions

See the BRICS tech report.
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Conclusion: What

• The functional correspondence is

compatible with monads.

• It makes it possible to mechanically construct

abstract machines for languages with effects.

interpreter inter // abstract
machinederivation

oo
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Conclusion: How

Standard program transformations:

• Closure conversion.

• Data-stack introduction.

• CPS transformation.

• Defunctionalization.
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Conclusion: How much

• Known, and not home-grown, machines.

• Variants of known machines.

• New machines.
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Conclusion: How much

• Evaluation.

• Normalization.

• Logic programming.

• Imperative programming.

• Object-oriented programming.
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Thank you.
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Krivine’s machine
and the CEK machine

• The two best-known abstract machines

for the λ-calculus.

• Developed and presented independently.
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A “Wadlerian” classification

• Krivine: the logician.

• Felleisen: the computer scientist.
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Limits of the classification

• Reynolds: the theoretician (CBN).

• Landin: the programmer (CBV).
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A point remains, however

• Discovery (KAM).

• Invention (CEK).
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Flashback

John Reynolds’s warning

about evaluation-order independence.
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A canonical evaluator

datatype term

= IND of int (* de Bruijn index *)

| ABS of term

| APP of term * term

datatype expval

= FUN of denval -> expval

withtype denval = expval
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fun eval (IND n, e)

= List.nth (e, n)

| eval (ABS t, e)

= FUN (fn v => eval (t, v :: e))

| eval (APP (t0, t1), e)

= let val (FUN f) = eval (t0, e)

in f (eval (t1, e))

end
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John Reynolds’s warning (1972)

Beware of the evaluation order

of the meta-language:

• Call by name yields call by name.

• Call by value yields call by value.

52



canonical evaluator

closure conv.
��

CBN
CPS transf.

xxqqqqqqqqqqqqqqqqqqq CBV
CPS transf.

$$JJJJJJJJJJJJJJJJJ

defunct.

��

defunct.

��
Krivine’s machine CEK machine
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Consequence

Krivine’s machine and the CEK machine are

not just discovered and invented — they are

two sides of the same standard coin.
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canonical evaluator

closure conv. (1964)

��
CBN

CPS transf.
(1975)

xxqqqqqqqqqqqqqqqqqqq CBV
CPS transf.

$$JJJJJJJJJJJJJJJJJ

defunct. (1972)
��

defunct.
��

Krivine’s machine
(1985)

CEK machine
(1986)
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Piet Hein’s gentle reminder: T.T.T.

Put up in a place

where it’s easy to see

the cryptic admonishment

T.T.T.

When you feel how depressingly

slowly you climb,

it’s well to remember that

Things Take Time.
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Models of abstract machines

• Eval-apply (CEK, etc.)

• Push-enter (KAM, etc.)
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Models of abstract machines

• Eval-apply (CEK, etc.)

• Push-enter (KAM, etc.)

They appear naturally.
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Call by need
(built-in dynamic programming)

Call by need: Call by name +

heap of updatable thunks.

Result: A host of known implementation

techniques and then some.

(see BRICS RS-04-03)
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