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Abstract. We show that strictly positive inductive types, constructed from
polynomial functors, constant exponentiation and arbitrarily nested inductive
types exist in any Martin-Lof category (extensive locally cartesian closed category
with W-types) by exploiting our work on container types. This generalises a result
by Dybjer (1997) who showed that non-nested strictly positive inductive types
can be represented using W-types. We also provide a detailed analysis of the
categorical infrastructure needed to establish the result.

1 Introduction

Inductive types play a central role in programming and constructive reasoning. From an
intuitionistic point of view we can understand strictly positive inductive types (SPITSs)
as well-founded trees, which may be infinitely branching. The language of SPITs is
built from polynomial types and exponentials, enriched by a constructor u for inductive
types. In this language we can conveniently construct familiar types such as the natural
numbers, N = uX.1+ X; binary trees, BTree = uX.1+4 X x X; lists parameterised over
a type List A= uX.1+ A x X; ordinals, Ord = uX.1+ X 4+ X¥; and finitely branching
trees, FTree = pY.ListY = uY.uX.1+ X x Y. Categorically, u corresponds to taking
the initial algebra of a given functor.

The grammar of SPITs can be easily defined inductively, see definition 7.1. However,
we would like to have a simple semantic criterion which guarantees the existence
of SPITs. Dybjer (1997) shows that inductive types over strictly positive operators
constructed using only polynomials in a single type variable and fixed exponentiation
can be constructed in extensional Type Theory using W-types, the type of well-founded
trees introduced in Martin-L6f (1984). However, Dybjer (1997) does not allow any
nesting of inductive types, e.g. the example FTree is not covered by his definition.
Here we present a more general result which shows that nested inductive types can
be constructed using only W-types and we analyse the categorical framework in more
detail.

An important ingredient in our construction is the insight that parametrised SPITs
give rise to containers, which we have investigated in Abbott et al. (2003) and which
are the topic of Abbott (2003). The basic notion of a container is a dependent pair of
types A B creating a functor T, pX = S a: A.XB@, A morphism of containers (A +



B) — (C+ D) is a pair of morphisms (u:A — C, f :u*D — B). With this definition of a
category ¢ of containers we can construct a full and faithful functor T : ¢4 — [C,C].

However, when constructing fixed points it is also necessary to take account of
containers with parameters, so we define T : ¢4, — [C',C] for each parameter index set
I. For the purposes of this paper the index set | can be regarded as a finite set, but this
makes little practical difference to the development.

It is easy to show that containers are closed under sums and products and constant
exponentiation, see Abbott et al. (2003); this is also done in Dybjer, 1997 for containers
in one variable. W-types are precisely the initial algebras of containers in one variable
(theorem 4.3), hence constructing inductive types over a single variable SPITs is
straightforward and already covered (in part) by Dybjer’s work. However, the general
case for nested types corresponds to showing that containers are closed under initial
algebras. The problem boils down (proposition 5.1) to solving an equation on families
of types up to isomorphism, which is achieved in proposition 6.1.

The work presented here also overcomes a shortcoming of Abbott et al. (2003):
there we constructed initial algebras of containers using the assumption that the ambient
category is locally finitely presentable. Alas, this assumption rules out many interesting
examples of categories, in particular realisability models such as cw-sets. This is fixed
here, since we only have to require that the category has all W-types, i.e. initial algebras
of container functors, which can be easily established for realisability models. Since
dependent types and inductive types are the core of Martin-L6f’s Type Theory, we call
categories with this structure Martin-Lo6f categories, see definition 4.4.

Dybjer and Setzer (1999, 2001) have a goal similar to ours in reducing schematic
presentations of inductive types to simpler combinators. However, the focus of their
work are inductive-recursive definitions such as universes which we do not consider
here. Indeed, we manage to avoid having to introduce universes to carry out our
constructions such as the isomorphism 6.1.

2 Definitions and Notation

This paper implicitly uses the machinery of fibrations (Jacobs 1999, Borceux 1994,
chapter 8, etc) to develop the key properties of container categories, and in particular
the fullness of the functor T relies on the use of fibred natural transformations. This
section collects together the key definitions and results required in this paper.

Given a category with finite limits C, refer to the slice category C/A over A € C as
the fibre of C over A. Pullbacks in C allow us to lift each f : A — B in C to a pullback or
reindexing functor f*:C/B — C/A. Assigning a fibre category to each object of C and
a reindexing functor to each morphism of C is (subject to certain coherence equations)
a presentation of a fibration over C.

Composition with f yields a functor 3 ; : C/A — C/B left adjoint to f*. C is locally
cartesian closed iff each fibre of C is cartesian closed, or equivalently, if each pullback
functor f* has a right adjoint f* - ;. The exponential is written as BA or A= B when
convenient.

Each exponential category C' can in turn be regarded as fibred over C by taking
the fibre of C' over A € C equal to (C/A)". Now define [C',C’] to be the category of



fibred functors F : C' — €’ and fibred natural transformations, where each F is a family
Fa:(C/A)! — (C/A)? such that (f*)IFg = F,(f*)! for each f:A — B and similarly for
natural transformations.

Write a: AF B(a) or even just A+ B for B € C/A. We’ll write A,B F C or with
variables a:A,b:B(a) - C(a,b) as a shorthand for (a,b):y,BF C(a,b). Given A B
write 7551 Y o B — A for the corresponding display map for the type B. Write 5 a: A and
[1a:A for the S and [] types corresponding to the adjoints to reindexing. Substitution
in variables will be used interchangeably with substitution by pullback, so A+ f*B may
also be writtenasa: A+ B(f(a)) ora: At B(fa).

When dealing with a collection A, for i € I, we’ll write this as (A, );, or A or even just
A. The signs § and [] will be used for both coproducts and products (respectively) over
external sets and the corresponding internal constructions in C. See Hofmann (1997)
for a more detailed explanation of the interaction between type theory and semantics
assumed in this paper.

The equality type A, A+ Eq, is represented as an object of C/A x A by the diagonal
morphism J, : A — A x A, and more generally I' ,A, A+ Eq,. Given parallel morphisms
u,Vv into A the equality type has the key property that an element of Eq(u,v) = (u,v)*Eq,
exists precisely when u = v as morphisms of C.

Limits and colimits are fibred iff they exist in each fibre and are preserved by
reindexing functors. Limits and colimits in a locally cartesian closed category C are
automatically fibred. This useful result allows us to omit the qualification that limits and
colimits be “fibred” throughout this paper.

When C is locally cartesian closed say that coproducts are disjoint (or equivalently
that C is extensive)® iff the pullback of distinct coprojections k; : A; = T A into a
coproduct is always the initial object 0. Henceforth, we’ll assume that C has finite
limits, is locally cartesian closed and has disjoint coproducts. For simplicity we call
such a category an extensive locally cartesian closed category. The following notion of
“disjoint fibres” follows from disjoint coproducts.

Proposition 2.1. If C is locally cartesian closed and has disjoint coproducts then
the functor K*: C/ ¥ Ai = Mici (C/A)), taking 3o, A F B to (A F K'B)g, is an
equivalence. Say that C has disjoint fibres when this holds.

i€l

Write H : [ier (C/A;) = C/ 5 i A for the adjoint to K* and — + — for the binary case.
Note that ;¢ B = Y| T« Bj for (A By)ic, € i (C/A)). For example, given A+ B
and C - D (with display maps 15 and 71,) we write A+C + B+ D for their disjoint sum;
this satisfies two identities: y ,c(B+D) 2 Y4B+ 3D and 1, , = Tt + T, (modulo
the preceding isomorphism).

The following lemma collects together some useful identities which hold in any
category considered in this paper.

1 For general C, coproducts are disjoint iff coprojections are also mono, and C is extensive iff
coproducts are disjoint and are preserved by pullbacks.



Lemma 2.2. For extensive locally cartesian closed C the following isomorphisms hold
(IC stands for intensional choice, Cu for Curry and DF for disjoint fibres):

Ha:A.Zb:B(a). Zf Ma:A.B(a naACafa) (Icy)
|_|ie| Zb'B- C' za |_||e| BI' I_liEICI (|C2)
|‘|aAcB = ( ZaAB )=C (Cul)
|_|iel Ch = (ZIEl ) =C (Cu2)
(ML, 8) () = B(@) (DF1)
Ziel za A;. C(k;a) za Yie A C(a) (DF2) O

For technical convenience, a choice of pullbacks is assumed in C.

Basic Properties of Containers
We summarise here the development of containers in Abbott et al. (2003).
Definition 2.3. Given an index set | define the category of containers ¢, as follows:
— Objects are pairs (A € C, B € (C/A)"); write thisas (A> B) €
— Amorphism (A B) — (C» D) isa pair (u, f) foru:A—CinCand f: (u*)'D - B
in (C/A)'.
A container (A> B) € ¢, can be written using type theoretic notation as
FA i:l,a:AF B(a) .
A morphism (u, f): (A B) — (C > D) can be written in type theoretic notation as

u:A—=C il,a:AF f(a):D;(ua) — B;(a) .

Finally, each (A B) € ¢, thought of as a syntactic presentation of a datatype, generates
a fibred functor T, 5 : C' — C which is its semantics.

Definition 2.4. Define the container construction functor T : ¢, — [C',C] as follows.
Given (A B) € %, and X € C' define

TweX = Y @A [Tig X5,

and for (u,f):(A>B) — (C>D) define Ty ¢:Tpg — Tgp to be the natural
transformation T, (X : Ty gX — Tg,pX thus:

(8,9) 1 TaopX F Ty ¢X(a,9) = (u(a), (9 fier) -

The following proposition follows more or less immediately by the construction of T.



Proposition 2.5 (Abbott et al., 2003, proposition 3.3). For each container F € ¢, and
each container morphism o : F — G the functor T, and natural transformation T, are
fibred over C. O

By making essential use of the fact that the natural transformations in [C',C] are fibred
we can show that T is full and faithful.

Theorem 2.6 (ibid., theorem 3.4). The functor T : ¢, — [C',C] is full and faithful. O

This theorem gives a particularly simple analysis of polymorphic functions between
container functors. For example, it is easy to observe that there are precisely n™
polymorphic functions X" — X™: the data type X" is the container (1 > n) and hence
there is a bijection between polymorphic functions X" — X™ and functions m — n.
Similarly, any polymorphic function ListX — ListX can be uniquely written as a
function u: N — N together with for each natural number n: N a function f,:un — n.

It turns out that each ¢, inherits products and coproducts from C, and that T
preserves them;

Proposition 2.7 (ibid., propositions 4.1, 4.2). If C has products and coproducts then
%, has products and coproducts preserved by T. O

Given containers F € ¢, ; and G € %, we can compose their images under T to construct
the functor

(idcl aTG)

.
T [To] = (C ¢ xcx=Cdt_F.q) .

This composition can be lifted to a functor —[—]: %, x¥, — ¢, as follows. For a

container in ¢, , write (A B,E) € 9, ;, where B € (C/A)! and E € C/A and define:

1+1 +1

(A > B,E)[(C v D)] = (a:A,f:CE<a> > (Bi(@)+ Y e:E(a). Di(fe))iel) :

In other words, given type constructors F (X,Y) and G(X) this construction defines the
composite type constructor F[G](X) = F(X,G(X)).

Proposition 2.8 (ibid., proposition 6.1). Composition of containers commutes with
composition of functors thus: Te[Tg] = Tr (. O
This shows how composition of containers captures the composition of container
functors.

3 Initial Algebras

In this section we discuss the construction of initial algebras for container functors and
the principles in the ambient category C used to construct them.

Initial algebras can be regarded as the fundamental building blocks used to introduce
recursive datatypes into type theory. Initial algebras define “well founded™ structures,
which can be regarded as the expression of terminating processes.

First some basic results about initial algebras.



Definition 3.1. An algebra for a functor F : C — C is an object X € C together with a
morphism h:FX — X; refer to X as the carrier of the algebra. An algebra morphism
(X,h) = (Y,Kk) is a morphism f:X — Y satisfying the identity f-h =k-F f. An initial
algebra for F is then an initial object in the category of algebras and algebra morphisms.

More explicitly, an initial algebra is an algebra o : FA — A such that for any other
algebra h:FX — X there exists a unique morphism h: A — X satisfying the equation
h-a = h-Fhthus:

FA—9 _ A

| |
FR! R

\ \4

FX——X
h

The following result tells us that initial algebras for a functor F are fixed points of F,
and indeed the initial algebra is often called the least fixed point.

Proposition 3.2 (Lambek’s Lemma). Initial algebras are isomorphisms. O

The following useful result about initial algebras tells us that initial algebras with
parameters extend to functors.

Proposition 3.3. Given a functor F:Dx C — C if each endofunctor F(X,—) on C
has an initial algebra (GX,aX) then G extends to a functor and a to a natural
transformation. O

We can now define an operation u constructing the least fixed point of a functors. If we
regard a functor F : D x C — C as a type constructor F (X,Y ) then we can can regard the
fixed points defined below as types.

Definition 3.4. Given a functor F : D x C — C regarded as a type constructor F(X,Y)
define Y .F(X,Y) to be the initial algebra of the functor F (X, —).

To extend this definition of u types to containers observe that for containers F € ¢, ;
and G € ¢, the operation G — F[G], with TF[G]X = T (X, TgX) is an endofunctor on &

Definition 3.5. ForF €9, ,

We will show in this paper that the functor p: %, , — % exists, and that the initial
algebra of a container functor is a container functor.

write uF for the initial algebra of F[—]: ¢4, — 4.

4 W-Types

In Martin-L6f’s Type Theory (Martin-L6f, 1974; Nordstrom et al., 1990) the building
block for inductive constructions is the W-type. Given a family of constructors A+ B
the type Wa: A.B(a) (or W,B) should be regarded as the type of “well founded trees”
constructed by regarding each a: A as a constructor of arity B(a).

The standard presentation of a W-type is through one type forming rule, an
introduction rule and an elimination rule, together with an equation. As the type theoretic
development in this paper focuses entirely on categorical models, we take W types to be
extensionally defined, in particular the elimination rule constructs a unique term.



Definition 4.1. A type system has W-types iff it has a type constructor

rAFB

FF W8 (W-type)
together with a constructor term

r,a:A, f:(W,B)EB@ I sup(a,b):W,B (sup)
and an elimination rule

r,W,B C

r,a:A, f:(W,B)EB® g:Mb:B(a).C(fb) - h(a, f,g):C(sup(a, f)) (wred)

I, w:W,B I wrec,(w):C(w)
satisfying the equation for variables a: A and f : (W ,B)5®:
wrec, (sup(a, f)) = h(a, f,wrec, -f) .

Note that we can use the elimination rule together with equality types to conclude that
wrec,, is unique.

Lemma 4.2. Given variables a: A, f:(W,B)B® and g: Mw,gC the following
conditional equation holds:

g(sup(a, f)) =h(a, f,g-f) = g=wrec, ,
in other words the term wrec,, uniquely satisfies the induction equation.

Proof. Given the equation g(sup(a, f)) =h(a, f,g- f) it is sufficient to construct a term
of type Eq(g(w),wrec,,(w)) for each w:W,B; inspecting the rule (wrec), it is enough
to construct Eq(g(sup(a, f)),wrec, (sup(a, f))) from [1b:B(a).Eq(g(fb),wrec,(fb)),
which is the same as g- f = wrec, -f. So calculate: g(sup(a, f)) = h(a,f,g-f) =
h(a, f,wrec, -f) = wrec, (sup(a, f)). O

The W in W-type stands for “Well-ordering™, and an element of W,B can usefully be
thought of as a well founded tree where each node of the tree is given by an element
a € A and the elements b € B(a) represent the possible descendents of (or branches
from) that node. Thus a tree can be described in two parts: a choice of element a € A
together with a function f assigning to each b € B(a) a descendant tree to the branch b.
Thus we get the constructor term sup: Ty, g(W,B) — W, B.

The elimination (or induction) rule (wrec) arises from the fact that every possible
path through a tree w € W ,B is finite. The constructor h(a, f,g) constructs a new output
over the tree w = sup(a, f) from the values available over all the descendants of w,
namely fb for each b € B(a). The parameter g programs in the availability of these
values.

W-types are initial algebras for a particularly familiar class of functors:



Theorem 4.3. W-types are precisely the initial algebras of container functors in one
parameter:

WuB 2 X, 5 XB=pX. TpgX

Proof. First observe that the map sup: T, gW,B — W,B makes W,B into an initial
Ty.g-algebra: given an algebra k: T, ;X — X define h(a, f,g) = k(a,g) and construct
k= wrec,,. To show that this is an algebra morphism, calculate in context a: A and
f:(W,B)E@

ksup(a, f) = wrec, (sup(a, f)) = h(a, f,wrec, - f) = k(a,k- f) = k(T gk)(a, f)

and uniqueness of this map follows immediately: if a map g: W,B — X also satisfies
g-sup =k- T, g0, thenin particular g(sup(a, f)) = k(a,g-f) =h(a, f,g- f) and sog =k.

Conversely, to show that uX.T, gX is a W-type we’ll need to do a little more
work. For conciseness write Z = uX. T, gX and sup: T, gZ — Z for the initial algebra
morphism on Z. Now let Z - C and h be given as in the hypotheses of the rule (wrec).

The initiality of Z will only allow us to construct a map into a constant type, so
define D = y,C and from h construct h’: T, gD — D as follows.

First observe that Ty gD = S A(5,C)B = 5,5 f:ZB.[1b:B.C(fb) (by intensional
choice), and so we can write the arguments of h’ asa: A, f:Z8® and g:b:B(a).C(fb)
and define h'(a, f,g) = (sup(a, f), h(a, f,g)) as the following composite map:

h
ToaD = $A(5,0)°= 5,5 1:2% [oe. o) P 5 c

Initiality of sup induces h:Z — ¥,C uniquely satisfying h-sup = h’- T, gh. Write
h = (hy,h;) and we can now write T, gh- (a, f) = (a,hy- f.h; - f) as an element of
> a6 [1g€"C. This equation can now be written as a pair of equations

ho(sup(a, f)) = sup(a,hy- ) , hy(sup(a, f)) =h(a,hy- f,h - f) .

The equation for h, tells us (by initiality of Z) that in fact h, = id, and then the second
equation tells us that h; = wrec,,, and so Z 2 W ,B as required. O

We consider that this notion summarises the essence of Martin-L&f’s Type Theory from
a categorical perspective, hence the following definition.

Definition 4.4. A Martin-Lof category is an extensive locally cartesian closed category
with an initial algebra for every container functor (i.e. W-types).

Constructing W-Types

We can either assume that C has W-types given axiomatically or, if C satisfies the
necessary preconditions, derive them from theorem 4.8 below. Alternatively if C is a
topos we can appeal to proposition 3.6 of Moerdijk and Palmgren (2000).



Proposition 4.5 (Moerdijk and Palmgren, 2000, proposition 3.6). W-types exist in
any elementary topos with a natural numbers object. O

In the rest of this section we’ll construct W-types from colimits in C. First we need to
set up some auxiliary machinery, deriving largely from Adamek and Rosicky (1994).
In particular, the result in this subsection as stated here relies on classical set-theoretic
reasoning.

Recall that a category J is said to be filtered iff every finite and non-empty diagram
in J has a compatible cocone in J. In Adamek and Rosicky (1994) we have the following
extension of this notion to an arbitrary regular cardinal O.

Definition 4.6. Say that a category J is O-filtered iff every subcategory of J with less
than O morphisms has a compatible cocone.

If a functor F : C — C preserves all O-filtered colimits say that F has rank 1, and
say that F has rank iff it has rank for some .

Note that an ordinary filtered category is precisely an O y-filtered category.

We now have the following important folklore result (see Abbott et al., 2003,
theorems 5.6, 5.7). A variant of this theorem is proved in Adamek and Koubek (1979),
and the case for 00, is a standard result in computer science (eg, Poigné, 1992, §7.3).

Proposition 4.7. If C has an initial object and colimits of all filtered diagrams then any
functor F : C — C with rank has an initial algebra.

Proof. A sketch proof follows. In the finite case (O = ;) we construct the colimit of
the w-chain

2 H n
0 FO F<0 mneDOFO.

Since F preserves this diagram, we can compute F IimnF“O = IimDFF”O = lim_F"0;
it is a straightforward calculation to verify that this Is the required initial apgebra

morphism.
The generalisation to arbitrary O is a not altogether straightforward set theoretic
generalisation of this result. O

We now obtain the following result.

Theorem 4.8. If C is locally cartesian closed and locally presentable then C has all
W-types.

Proof. It will suffice to show that every one-parameter container functor T, 5:C — C
has rank, and hence has an initial algebra. Decompose T, g into the chain of functors

c Aon Dlgn e

We appeal to two results of Adamek and Rosicky (1994) to show that all of these functors
(and hence their composite) have rank. We know from their theorem 2.39 that each C/A
is accessible, and their proposition 2.23 tells us that every functor between accessible
categories with an adjoint has rank. O



5 Initial Algebras of Containers

One consequence of theorem 4.3 is that in the presence of W-types we can immediately
construct u types for containers in one parameter. However, the construction of a u
type for a container in multiple parameters is a more delicate matter and will require the
introduction of more machinery.

Let F:C'+1 — C be a container in multiple parameters, which we can write as

FXY) =TgpoX,Y) =3 s:8 (i1 X19) x Y =5 ([, XPxYQ) .
The task is to compute (A B) such that T, g X = uY.F(X,Y). Clearly
AT, sl=puy. F(LY)=py. ZS:S.YQ(S) =WQ ,

but the construction of WQ F B is more tricky.

In the rest of this paper we will ignore the index set | and write X for ], X. In
particular, this means that the family B € (C/WgQ)' will be treated uniformly (as if
I = 1). The required extra working to take account of I can be routinely added, but
will further complicate a presentation which is quite complex enough already. We will
therefore take

ZS xYQ

To simplify the algebra of types we will write S,AQ - P + PXe) £*B as an abbreviation
for the type expression (where ¢ is an evaluation map AQ x Q — A):

s:S, f:A%9 - P(s)+ 3 q:Q(s). B(faq)
For conciseness write the initial algebraon A=WgQ as (: zSAQ — A

Proposition 5.1. Given the notation above, if WcQ F B is equipped with an
isomorphism

S,AR - ¢:P+ Y oE'B2YB
then T, gX = uY.F(X,Y).

Proof. First we show that each T,, gX is an F (X, —) algebra thus:
FOXTasX) = 3 s (X% (TaXB)%) 2 36 (X7 T o [10X)
o ZSZAQ (XP % I—leg*B) ~ ZSZAQXP+ZQ3*B
ot «g (W:id)
2 S T aXYE Y XE=T X

With variables s:S, g:XP® and h: (3, XB)Q(S) note that we can decompose h into
components 77-h: A9 and 77 - h: [7q: Q(s). XB(™M%) and so the algebra morphism in:
F(X,TpgX) = Tp.gX can be conveniently written as

in(s,g,h) = (W(s, ), [g: 7 -h] - 671



conversely, given variables s:S, f:AQ® and k: X B(¥(s1) similarly note that k- ¢ - k' can
be regarded as a term of type [1q: Q(s). X' and so we can write

in~Y(Y(s, £),k) =(s, k-¢-k, (f,k-¢-k")) .

To show that in is an initial F(X,—)-algebra we need to construct from any algebra
a:F(X,Y) =Y aunique map a:T,, gX — Y satisfying the algebra morphism equation
a-in=oa-FX,a):

FOX, TpopX) —s T, X

| |
F(Xaﬁ)‘ |
\4 Y
FOXY) ——5—=Y

The map @ can be transposed to a term A+ @ : XB = Y which we will construct by
induction on A = W¢Q. Givens:S, f: A9 and k: XBW(ST) constructg =k- ¢ - k : XPO)
and h=k-¢-k’":19:Q(s). XBf9 In this context define H(s, f, 8)(k) = a(s,g,8(h))
and compute

a(UJ(Sa f))(k) :ﬁ(lﬂ(s, f)ak) =a- in-(s,g,(f,h))
:a-F(X,ﬁ)-(S,g,(f,h)):o{(s,g,ﬁ-(f,h))
=a(s,g,(a-f)(h) =H(s, f,a-f)k) .

This shows that & = wrec, and thus that T,, X is an F (X, —)-initial algebra. O

Note that as a corollary of this proposition the isomorphism P + 5, €*B = (J*B over
WcQ defines B up to isomorphism, since the container T, g is determined up to
isomorphism as an initial algebra.

Of course, it remains to prove the hypothesis of the theorem above, that a family
Ak B with the given isomorphism ¢ exists; we do this in proposition 6.1.

6 Constructing a Fixed Point over an Initial Algebra

Proposition 5.1 relies on the hypothesis that the functor X — P + do&X has a fixed
point “over” the initial algebra Ta.0A = A, or in other words there exists a B such
that P + SoEB=YB. This fixed point does indeed exist, as a subtype of a W-type.

Proposition 6.1. For each fixed point (: Ta A=A there exists an object A I B such
that there is an isomorphism:

S,AQ + P+, B=y'B.

Proof. Write S,A° I ¢ : P+35,€"B — ¢*B for the isomorphism that we wish to
construct. As already noted, we cannot directly appeal to W-types to construct this fixed



point, so the first step is to create a fixed point equation that we can solve. Begin by
“erasing” the type dependency of B and construct (writing oY = Q x Y, etc)

B= Y. 3 o3 so(P+QxY) =pv. (TAxP)+ (T (Ax Q) xY)
= List (T (A% Q)) x T (A9 P) ;

there is no problem in constructing arbitrary lists in C so B clearly exists.

The task now is to select the “well-formed” elements of B. A list in B can be thought
of as a putative path through a tree in uY. TS>P,Q(X ,Y); we want B(a) to be the set of all
valid paths to X-substitutable locations in the tree.

An element of B can be conveniently written as a list followed by a tuple thus

([(80 f0,A0) - --» (Sn—15 fr1:An—1)], (Sn; Fn, )

fors;:S, f,:AQS), q.:Q(s;) and p:P(sn). The condition that this is a well formed element
of B(Y(sy, fy)) can be expressed as the n equations

f (q|) = Lp(si+1, fi+1) fori<n
which can be captured as an equaliser diagram

S B ¢ B Lista
B
r& %
A

where a, 3 and w are defined inductively on B as follows (and 1z = w-e):

a(nil, p’) = nil a(cons((s, f,q),1),p’) = cons(fa,a(l, p’))
w(nil, (s, f,p)) = ¢(s,f)  w(cons((s, ,q),1),p") = Y(s, f)
B(nil,p) = nil B(cons(b,1),p') = cons(a(l,p’),B(1,p")) -

The property that b: B is an element of B can be written b: B(wb) and can be
expressed inductively as follows:

T = (nil,(s, f,p)) :B(Y(s, f)) 1)
fag=a(l,p) A (I,p"):B(fa) = (cons((s, f,a),1),p") :B(u(s, 1)) - 2
The converse to (2) also holds, since (cons((s,f,q),l),p’): B(Y(s,f)) <=

cons(fa,a(l, p')) = cons(w(l, p'), B(I,p")) <= fa=w(l,p')A(l,p"):B(fq).

The isomorphism @ : 35 ,o(P+Qx B) = B can now be used to construct the
isomorphism ¢ for B. Writing an element of 35 ,o(P+Q x B) as (s, f,kp) or
(s, f,k'(q,b)), the function § can be computed thus:

~ i Q ~
363 po(P+QxB) 2 L'it(zzj% XXFg)) -8
(s, f,kp) — (nil, (s, T, p))

(s, f,6'(a,(1,p)) «— (cons((s, f,a),1),p') -



To show that @ restricts to a morphism ¢ : P + >q&"B — B we need to show for each
s:Sand f:AQthat x: (P(s) + 3 q:Q(s).B(fq)) implies @ (s, f,x) : B(¢(s, f)).

When x = kp we immediately have @ (s, f,kp) = (nil,(s, f,p)) : B(y(s, f)) by
(1) above. Now let (s, f,k’(q,(l,p’))) be given with (I,p’):B(fq) (which means,
in particular, that @(l,p’) = fq) and consider the equation @(s, f,k’(q,(l,p"))) =
(cons((s, f,q),1),p"), then by (2) this is also in B(((s, f)). Thus @ restricts to

5:8,f 1A k¢ P(s)+ Y q:Q(s). B(fa) — B(Y(s, 1)) -

We have in effect constructed ¢ making the diagram below commute:

T3 a0 (P+ zQs*B) ¢

2B

RZSA‘?—WM% {e

RN
B .

ZSZAQ(P+QX§) a

To show that ¢ is an isomorphism we need to show that $ 1 restricts to an inverse
to ¢. As before we can analyse b: B(((s, f)) into two cases, and show that in both cases
$7'b:P(s) +59:Q(5)-B(fq).

When b = (nil, (s, f, p)) then b = (s, f, k p) which can be regarded as an element
of P(s). When b = (cons((s, f,q),1),p’) and so § b = (s, f,k’(q, (I, p’))) it is enough
to observe that b:B(uy(s, f)) implies (I,p’) :B(fq) and hence b arises from an
element of 5 q:Q(s).B(fq). O

We conclude our development with the following summary result as a corollary.

Corollary 6.2. If C has W-types then containers are closed under the construction of
U-types.

Note that that since uF is a fixed point, it satisfies the isomorphism puF = F[uF].

7 Strictly Positive Inductive Types

We now have enough machinery in place to observe that all strictly positive types can
be described as containers.

Definition 7.1. A strictly positive inductive type (SPIT) in n variables (Abel and
Altenkirch, 2000) is a type expression (with type variables X, . .., Xp) built up inductively
according to the following rules:

— if K is a constant type (with no type variables) then K is a SPIT;
— each type variable X; is a SPIT,;



— if F,Gare SPITsthensoare F + G and F x G;

— if K is a constant type and F a SPIT then K = F is a SPIT;

— if FisaSPIT in n+ 1 variables then uX.F is a SPIT in n variables (for X any type
variable).

Note that the type expression for a SPIT F can be interpreted as a functor F:C" — C,
and indeed we can see that each strictly positive type corresponds to a container in ¢,.
Let strictly positive types F, G be represented by containers (A > B) and (C > D)
respectively, then the table below shows the correspondence between strictly positive
types and containers.
K (K> 0) X (1> (8)ea)

F+G— (A+C > B+D) FxGrs(a:A, c:C > B(a) x D(c))
K=F (f:AC > S kK. B(fk))

As we have seen in this paper the construction of fixed points can be described in a
uniform way. Let F be represented by (S P,Q) € ¢, ,, then for each fixed point ¢:
TSDQA = A of Tg o we have constructed in proposition 6.1 an isomorphism over ,
written here as A+ B, of the form

s:S, f1A%Y k- ¢:P(s)+ Y q:Q(s). Ba(fs) — BA(W(Gs, T)) ;

we can now define

HY. F s (WeQ > By o) -

8 Discussion and further work

An important extension of the work presented here is to include coinductive types
(v), corresponding to terminal coalgebras, to cover non-well founded data structures
such as streams (Stream A = vX.A x X), which are used extensively in lazy functional
programming. We conjecture (see Abbott, 2003, p. 78), that Martin-Lof categories are
closed under v-types — this can be reduced to constructing the dual of W-types which
we dub M-types.

Another interesting extension would be to consider inductive and coinductively
defined families (such as vectors or simply typed A -terms). Again, we conjecture that it
should be possible to represent those within Martin-L6f categories. This result would
provide further evidence establishing that these categories provide a convenient and
concise base for intuitionistic Type Theory.
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