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ABSTRACT
We consider the relation of the dual calculus of Wadler
(2003) to the λµ-calculus of Parigot (1992). We give a trans-
lation from the λµ-calculus into the dual calculus, and an
inverse translation from the dual calculus back into the λµ-
calculus. The translations form an equational correspon-
dence as defined by Sabry and Felleisen (1993). Translating
from λµ to dual and then ‘reloading’ from dual back into
λµ yields a term equal to the original term. Composing the
translations with duality on the dual calculus yields an in-
volutive notion of duality on the λµ-calculus. A previous
notion of duality on the λµ-calculus has been suggested by
Selinger (2001), but it is not involutive.

Note. This paper uses color to clarify the relation of
types and terms, and of source and target calculi. If the
URL below is not in blue please download the color version
from

http://www.research.avayalabs.com/user/wadler

or google ‘wadler dual reloaded’.
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1. INTRODUCTION
Sometimes less is more. Implication is a key connective of

logic, but for some purposes it is better to define it in terms
of other connectives, taking A ⊃ B ≡ ¬A ∨ B or A ⊃ B ≡
¬(A & ¬B). This is helpful if one wishes to understand de
Morgan duality. The dual of & is ∨, and ¬ is self dual, but
the dual of implication is the difference operator, B − A ≡
B & ¬A or B − A ≡ ¬(¬B ∨ A), which is not particularly
familiar.

Church (1932) introduced the call-by-name λ-calculus,
and a few years later Bernays (1936) proposed the call-by-
value variant. A line of work, including that of Filinski
(1989), Griffin (1990), Parigot (1992), Danos, Joinet, and
Schellinx (1995), Barbanera and Berardi (1996), Streicher
and Reuss (1998), Selinger (1998,2001), and Curien and Her-
belin (2000), has led to a startling conclusion: call-by-value
is the de Morgan dual of call-by-name.

Wadler (2003) presents a dual calculus that corresponds to
the classical sequent calculus of Gentzen (1935) in the same
way that the lambda calculus of Church (1932,1940) cor-
responds to the intuitionistic natural deduction of Gentzen
(1935). The calculus possesses an involutive duality, which
takes call-by-value into call-by-name and vice-versa. A key
to achieving this is to not take implication as primitive, but
to define it by taking A⊃B ≡ ¬A ∨B under call-by-name,
or A⊃B ≡ ¬(A & ¬B) under call-by-value.

Wadler (2003) included a discussion of call-by-value and
call-by-name CPS translations from the dual calculus into
the λ-calculus. Here we complete the story by discussing a
translation from the λµ-calculus of Parigot (1992) into the
dual calculus, together with an inverse translation. We will
show that there is a translation from the λµ-calculus into
the dual calculus which forms an equational correspondence,
as defined by Sabry and Felleisen (1993).

Say we have a source and target calculus with equations
defined on them, writing

M =v N

for equality in the source, and

M =v N

for equality in the target. Further, say we have translations
between them, such that

(M)∗ ≡ N

converts source term M to a target term N , and

(N)∗ ≡ M



converts target term N to source term M . We have an
equational correspondence if the following four conditions
hold.

• The translation from source to target preserves equa-
tions,

M =v N implies (M)∗ =v (N)∗,

with M, N source terms.

• The translation from target to source preserves equa-
tions,

M =v N implies (M)∗ =v (N)∗,

with M, N target terms.

• Translating for source to target and then ‘reloading’
from target to source yields a term equal to the original
term,

((M)∗)∗ =v M,

with M a source term.

• Translating for target to source and then ‘reloading’
from source to target yields a term equal to the original
term,

((M)∗)
∗ =v M,

with M a target term.

The existence of an equational correspondence shows in a
strong sense that the translation is both sound and complete
with respect to equations. In particular an equation holds
in the source if and only if its translation holds in the target.

Wadler (2003) shows that there is a CPS translation from
dual calculus into λ-calculus that forms a reflection, as dis-
cussed by Sabry and Wadler (1997). A reflection is a spe-
cial case of both a Galois connection, as discussed by Sabry
and Wadler (1997), and of a Lagois connection, as discussed
by Melton, Schröder, and Strecker (1994). Every Galois or
Lagois connection is an equational correspondence (where,
as usual, equality is the reflexive, symmetric, and transitive
closure of reduction).

It is easy to see that the composition of two equational
correspondences is also an equational correspondence. Re-
flections and Galois connections also compose, and Lagois
connections compose under some circumstances.

The translation from λµ-calculus into dual calculus is an
equational correspondence for both call-by-value and call-
by-name, and the CPS translation for dual calculus comes in
dual call-by-value and call-by-name variants, both of which
are reflections, and hence equational correspondences. Their
composition yields the usual call-by-value and call-by-name
CPS translations for λµ, as studied by Hoffman and Stre-
icher (1997) and Selinger (2001); and it follows immediately
that both of these are equational correspondences.

Fujita (2003) also shows that the call-by-value CPS trans-
lation for λµ-calculus is an equational correspondence; but
says nothing about call-by-name. The advantage of the
proof here is that the CPS translation for λµ can be com-
puted by composing other translations, and that its proper-
ties follow immediately from its construction by composition
rather than requiring separate proof.

Duality is a translation that takes the dual calculus into
itself. Since it is an involution (the dual of the dual is the

identity), duality is trivially an equational correspondence.
We may derive a duality transform from λµ-calculus to itself
by forming the threefold composition of (i) the translation
from λµ-calculus to dual calculus with (ii) the duality trans-
lation from dual calculus to itself with (iii) the reloading
translation from dual calculus back to λµ-calculus; and fol-
lows immediately that this is an equational correspondence.
The same duality transform works for both call-by-value and
call-by-name.

Selinger (2001) also presents a duality transformation for
λµ-calculus, and shows that it is an involution up to equal-
ity in a control category. Selinger’s duality required some
cleverness to construct — it answered an open question of
Streicher and Reuss (1998). The advantage of the proof here
is that duality for λµ can be computed by composing other
translations, and that its properties follow immediately from
its construction by composition rather than requiring sepa-
rate proof. Also, the work here uses purely syntactic tech-
niques, depending only on equations in the λµ and dual
calculi, with no reference to control categories or other se-
mantic frameworks.

This paper contains almost entirely new material as com-
pared with Wadler (2003). The description of the dual cal-
culus overlaps with that paper, but the relationship with λµ
is entirely new, as is the treatment of η laws.

2. THE λµ-CALCULUS
The syntax and type rules of the λµ-calculus are shown

in Figure 1. Following Parigot (1993), we distinguish two
main constructs, terms and statements (Parigot called these
unnamed terms and named terms.)

As usual, we require the body of a µ-abstraction to be
a statement. However, we also take the unusual step of
requiring the body of a λ-abstraction to be a statement.
General functions take an argument and return a result, and
correspond to an implication A⊃B. Our restricted functions
take an argument but return no result, and correspond to a
negation ¬A ≡ A⊃⊥. The restriction is not as severe as it
might at first seem, since general functions may be defined
it terms of our restricted functions, just as one can define
implication in terms of negation by taking A⊃B ≡ ¬A∨B
or A⊃B ≡ ¬A ∨B¬(A & ¬B).

Let A, B range over types. A type is atomic X; a conjunc-
tion A&B; a disjunction A∨B; or a negation ¬A. Let x, y, z
range over variables, and α, β, γ range over covariables.

Let M, N, O range over terms, and S, T range over state-
ments. A term is a variable x; a λ-abstraction λx. S; or a
µ-abstration µα. S. A statement is a function application
O M or a covariable application [α] M . The computational
interpretation of a µ-abstraction µα. S is to bind the covari-
able α and then evaluate statment S; if during evaluation of
S the covariable α is applied to a value, then that value is
returned as the value of the µ-abstraction; this is similar to
the behaviour of callcc in Scheme.

We also have products and sums. Products are con-
structed with pairing 〈M, N〉 and decontstructed with pro-
jections fst O and snd O. Following Selinger (2001), we con-
struct sums with a variant of the mu abstraction µ[α, β]. S,
and deconstruct sums with a variant of covariable applica-
tion [α, β] O. The term µ[α, β]. S constructs a sum: if α is
passed a value of type A then the µ-abstraction returns a left
injection into the sum type A∨B, and if β is passed a value
of type B then the µ-abstraction returns a right injection



into the sum type A∨B. Conversely, the statement [α, β] O
deconstructs a sum; the term O has a sum type A∨B, and
if it returns a left summand then covariable α is passed the
value of type A, while if it returns a right summand then
covariable β is passed the value of type B.

Substitution of a term for a variable is standard, but sub-
stitution for a covariable is slightly tricky. The notation
used here is adapted from Selinger (2001).

Definition 2.1. (Substitution for a covariable) Let S be
a statement, α a covariable of type A, and T{−} be a state-
ment context with a hole accepting a term of type A. We
write

S{T{−}/[α] {−}}
for the substitution that makes the recursive replacements

[α] M 7→ T{M},
[α, β] O 7→ T{µα. [α, β] O},
[β, α] O 7→ T{µα. [β, α] O}.

Call-by-value reductions are shown in Figure 3 and call-
by-name reductions are shown in Figure 4. We write −→v

and −→n for the reflexive and transitive closure of the reduc-
tions shown in the figures, and =v and =n for the reflexive,
symmetric, and transitive closure.

Let V, W range over values. A value is a variable, a pair
of values, an injection of a value, a function, or a projection
from a value.

The rules are grouped as β rules, which reduce a decon-
structor applied to a contructor; η rules, which introduce a
constructor applied to a deconstructor (this may enable β
reductions elsewhere); ν rules, which introduce names for
terms; and ς rules, which perform commuting conversions.

The (ν) rules are similar to the reductions (let.1) and
(let.2) in the λc-calculus of Moggi (1988).

(let.1) M N −→c let x = M in x N
(let.2) V N −→c let y = N in V y

These reductions correspond to the operation of introduc-
ing names for subterms in continuation passing style, as ex-
plained by Sabry and Wadler (1997).

The reductions were derived by putting an order on the
equations given by Selinger (2001); some of Selinger’s equa-
tions could be simplified because of the restriction on func-
tions in our formulation. The η expansions should be applied
only in a context where the introduced constructor is not im-
mediately deconstructed; this avoids the regress of applying
the same expansion infinitely. Restrictions to achieve this
in the call-by-name case are discussed by Pym and Ritter
(2001), who prove confluence and strong normalization for
a system similar to the one presented here.

The restriction on functions does not lose expressive
power, since general functions can be defined in terms of
restricted functions. However, different definitions must be
used for call-by-value or call-by-name.

Proposition 2.2. Under call-by-value, functions may be
defined by

A⊃B ≡ ¬(A & ¬B)
λx. N ≡ λz. (λx. snd z N) (fst[z])
O M ≡ µβ. O 〈M, λy. [β] y〉

validating the reduction rules

(β⊃) (λx. N) V −→v N{V/A}
(η⊃) V : A⊃B −→v λx. V x,

and where the translation of a function abstraction is a
value.

Proposition 2.3. Under call-by-name, functions may be
defined by

A⊃B ≡ ¬A ∨B
λx. N ≡ µ[γ, β]. [γ] λx. [β] N
O M ≡ µβ. (µγ. [γ, β] O) M

validating the reduction rules

(β⊃) (λx. N) M −→n N{M/A}
(η⊃) M : A⊃B −→n λx. M x.

3. THE DUAL CALCULUS
Figure 2 presents the syntax and inference rules of the dual

calculus. Types, variables, and covariables are the same as
the λµ-calculus.

Let M, N range over terms, which yield values. A term is
either a variable x; a pair 〈M, N〉; an injection on the left or
right of a sum 〈M〉inl or 〈N〉inr; a complement of a coterm
[K]not; a function abstraction λx. N , with x bound in N ;
or a covariable abstraction (S).α, with α bound in S.

Let K, L range over coterms, which consume values. A
coterm is either a covariable α; a projection from the left or
right of a product fst[K] or snd[L]; a case [K, L]; a comple-
ment of a term not〈M〉; a function application M @ L; or a
variable abstraction x.(S), with x bound in S.

Finally, let S, T range over statements. A statement is
a cut of a term against a coterm, M • K. Note that angle
brackets always surround terms, square brackets always sur-
round coterms, and round brackets always surround state-
ments. Curly brackets are used for substitution and holes
in contexts.

The type rules given here differ slightly from Wadler
(2003), in that they are presented in syntax-directed form;
so thinning, exchange, and contraction are built into the
form of the rules rather than given as separate structural
rules.

A cut of a term against a variable abstraction, or a cut
of a covariable abstraction against a coterm, corresponds to
substitution. This suggests the following reduction rules.

(βL) M • x.(S) −→ S{M/x}
(βR) (S).α •K −→ S{K/α}

Here substitution in a statement of a term for a variable
is written S{M/x}, and substitution in a statement of a
coterm for a covariable is written S{K/α}.

A critical pair occurs when a covariable abstraction is cut
against a variable abstraction.

(S).α • x.(T )

Sometimes such reductions are confluent.

(x • α).α • y.(y • β)
↙ ↘

x • y.(y • β) (x • α).α • β
↘ ↙

x • β

But sometimes they are not.

(x • α).β • y.(z • γ)
↙ ↘

x • α z • γ



To restore confluence we must limit reductions, and this is
achieved by adopting call-by-value or call-by-name.

Call-by-value only reduces a cut of a value against a vari-
able abstraction, but reduces a cut of a covariable abstrac-
tion against any coterm.

(βL) V • x.(S) −→v S{V/x}
(βR) (S).α •K −→v S{K/α}

Value V replaces term M in rule (βL). A value cannot be a
covariable abstraction, so this avoids the critical pair.

Call-by-name only reduces a cut of a covariable abstrac-
tion against a covalue, but reduces a cut of any coterm
against a variable abstraction.

(βL) V • x.(S) −→v S{V/x}
(βR) (S).α •K −→v S{K/α}

Covalue P replaces coterm K in rule (βR). A covalue cannot
be a variable abstraction, so this avoids the critical pair.

In λ-calculus, the move from call-by-value to call-by-name
generalizes values to terms. In dual calculus, the move from
call-by-value to call-by-name generalizes values to terms but
restricts coterms to covalues, clarifying the duality.

Call-by-value reductions are shown in Figure 5 and call-
by-name reductions are shown in Figure 6. We write −→v

and −→n for the reflexive and transitive closure of the reduc-
tions shown in the figures, and =v and =n for the reflexive,
symmetric, and transitive closure.

Let V, W range over values. A value is a variable, a pair of
values, a left or right injection of a value, or any complement.
The fact that any complement is a value is analogous to the
fact that any function is a value in the λv calculus. Unlike
the call-by-value λµ calculus, we do not define the projection
of a value to be a value, but the same effect is achieved by
the (ς∨) rules.

Let P, Q range over covalues. A covalue is a covariable,
a first or second projection of a covalue, a case over a pair
of covalues, or any complement. Covalues correspond to a
strict context, one that is guaranteed to demand the value
passed to it.

As before, the reduction rules are grouped into β, η, ν,
and ς rules. Note that the ν rules are called ς rules in Wadler
(2003).

4. TRANSLATIONS
We now consider the translation from the λµ-calculus to

the dual calculus and its inverse translation.

Definition 4.1. The translation from the λµ-calculus
into the dual calculus is given in Figure 7. It consists of
three operations,

(M)∗, (M)∗{P}, (S)∗.

• If M is a λµ term of type A, then (M)∗ is a dual term
of type A.

• If M is a λµ term of type A and P is a dual cotermm
of type A, then (M)∗{P} is a dual statement.

• If S is a λµ statement, then (S)∗ is a dual statement.

Definition 4.2. The translation from the dual calculus
into the λµ-calculus is given in Figure 8. It consists of three
operations,

(M)∗, (K)∗{O}, (S)∗.

• If M is a dual term of type A, then (M)∗ is a λµ term
of type A.

• If K is a dual coterm of type A, and O is a λµ term
of type A, then (K)∗{O} is a dual statement.

• If S is a dual statement, then (S)∗ is a λµ statement.

Although the translations preserve β reductions, they do
not preserve all η, ν, and ς reductions. However, they do
preserve equalities, where equality is defined as the symmet-
ric and transitive closure of reduction.

In general, these translatios do not preserve reductions,
but they do preserve equalities. We now present the detailed
results to show that the translations form an equational cor-
respondence between the call-by-value λµ calculus and the
call-by-value dual calculus.

Proposition 4.3. (λµ reloaded) Translating from the
λµ-calculus into the dual calculus and then ‘reloading’ into
the λµ-calculus gives a term equal to the original under call-
by-value,

((M)∗)∗ =v M
((M)∗{K})∗ =v (K)∗{M}
((S)∗)∗ =v S,

with M a term in λµ, K a coterm in , and S a statement
in λµ.

The first line follows immediately from the second, since

(M)∗ ≡ ((M)∗{α}).α = ((α)∗{M}).α = (M • α).α = M.

The second and third lines are shown by case analysis on
terms and statements of λµ.

Proposition 4.4. (dual reloaded) Translating from the
dual calculus into the λµ-calculus and then ‘reloading’ into
the dual calculus gives a term equal to the original under
call-by-value,

((M)∗)
∗ =v M

((K)∗{O})∗ =v (O)∗ •K
((S)∗)

∗ =v S,

with M a term in dual, K a coterm in dual, O a term in
λµ, and S a statement in dual.

The three lines are shown by case analysis on terms,
coterms, and statements of dual.

Proposition 4.5. (λµ to dual preserves equalities)
Translating from the λµ-calculus into the dual calculus pre-
serves call-by-value equalities,

M =v N implies (M)∗ =v (N)∗

M =v N implies (M)∗{K} =v (N)∗{K}
S =v T implies (S)∗ =v (T )∗,

with M, N terms in λµ, K a coterm in dual, and S, T state-
ments in λµ.

The first line follows immediately from the second and
Proposition 4.3. The second and third lines are shown by
case analysis on the reductions of λµ that apply to terms
and statements respectively.



Proposition 4.6. (dual to λµ preserves equalities)
Translating from the dual calculus into the λµ-calculus pre-
serves call-by-value equalities,

M =v N implies (M)∗ =v (N)∗
K =v L implies (K)∗{O} =v (L)∗{O}
S =v T implies (S)∗ =v (T )∗,

with M, N terms in dual, K, L coterms in dual, O a term in
λµ, and S, T statement in dual.

The three lines are shown by case analysis on the reduc-
tions of dual that apply to terms, coterms, and statements
respectively.

The four propositions above also hold for call-by-name.
The restatement is easy, simply replace =v and =v every-
where by =n and =n. However, while the structure of the
proofs is essentially the same, the new sets of reductions re-
quire that one repeat the proofs entirely, since there is no
simple, systematic relation between the call-by-value and
call-by-name reductions of λµ.

However, there is a systematic relation between the call-
by-value and call-by-name reductions of dual. We next con-
sider how to characterize and exploit this regularity.

5. DUALITY
We now review the results about duality for the dual from

Wadler (2003), and use these to derive similar results con-
cering duality for the λµ-calculus.

The dual calculus is designed to exploit duality. Variables
are dual to covariables, pairs are duals to sums, complement
is self dual, term abstraction is dual to coterm abstraction,
and cut is self dual.

This can be captured in a translation from the dual calcu-
lus into itself. The translation is involutive – that is, it is its
inverse – and it carries call-by-value reductions into call-by-
name, and vice versa. So it is an equational correspondence.

We assume a one-to-one correspondence between variables
and covariables. Each variable x corresponds to a covariable
x̄, and each covariable α corresponds to a variable ᾱ, such
that ¯̄x ≡ x and ¯̄α ≡ α. For instance, we might take x̄ ≡
α, ȳ ≡ β, z̄ ≡ γ, and hence ᾱ = x, β̄ = y, γ̄ = z.

Definition 5.1. The duality translation from the dual
calculus to itself is given in Figure 9. It consists of three
operations,

(M)◦, (K)◦, (S)◦.

• If M is a dual term of type A, then (M)◦ is a dual
coterm of type A.

• If K is a dual coterm of type A, and (K)◦ is a dual
term of type A.

• If S is a dual statement, then (S)◦ is a dual statement.

It is immediate from the definition that duality is its own
inverse.

Proposition 5.2. (Involution) Duality is an involution
up to identity,

((A)◦)◦ ≡ A
((M)◦)◦ ≡ M
((K)◦)◦ ≡ K
((S)◦)◦ ≡ S,

with A a type of dual, M a term of dual, K a coterm of
dual, and S a statement of dual.

It is easy to confirm that the type rules come in dual pairs,
&R is dual to ∨L, ∨R is dual to &L, ¬R is dual to ¬L, the
Id rules are dual, and Cut is dual to itself.

Proposition 5.3. Duality preserves types,

Γ ➞ Θ ❙ M : A iff (M)◦ : (A)◦ ❙ (Θ)◦ ➞ (Γ)◦

K : A ❙ Γ ➞ Θ iff (Θ)◦ ➞ (Γ)◦ ❙ (K)◦ : (A)◦

Γ ❙ S ❙➞ Θ iff (Θ)◦ ❙ (S)◦ ❙➞ (Γ)◦,

with A a type of dual, M a term of dual, K a coterm of
dual, and S a statement of dual.

For the dual calculus, call-by-value is dual to call-by-
name. This is easily confirmed by inspection of the reduction
rules; indeed, it was the principle guiding their design.

Proposition 5.4. (Call-by-value is dual to call-by-name)
Duality takes call-by-value reductions on dual, into call-by-
name reductions, and vice versa.

M −→v N iff (M)◦ −→n (N)◦

K −→v L iff (K)◦ −→n (L)◦

S −→v T iff (S)◦ −→n (T )◦,

with M, N terms of dual, K, L coterms of dual, and S, T
statements of dual.

An immediate consequence of the above is that duality
is an equational correspondence between the call-by-value
dual calculus and the call-by-name dual calculus.

We now extend the above results from the dual calculus
to the λµ-calculus.

Using the translations of the previous section, we can com-
pute duals for the λµ-calculus by translating from λµ to
dual, taking the dual, and then ‘reloading’ back into λµ.

Definition 5.5. The duality transformation from the λµ
calculus to itself is given in Figure 10. It consists of two
operations, defined as follows,

(M)◦{O} ≡ (((M)∗)◦)∗{O}
(S)◦ ≡ (((S)∗)◦)∗

• If M is a λµ term of type A and O is a λµ term of
type A, then (M)◦{O} is a λµ statement.

• If S is a λµ statement, then (S)◦ is a λµ statement.

In effect, we compose three equational correspondences
(from λµ to dual, from dual to itself, and from dual to λµ)
to yield a new equational correspondence (from λµ to itself).

It follows immediately that duality on λµ takes call-by-
value into call-by-name.

Proposition 5.6. (Call-by-value is dual to call-by-name,
reloaded) Duality takes call-by-value equalities on λµ into
call-by-name equalities, and vice versa.

M =v N iff (M)◦{O} =n (N)◦{O}
S =v T iff (S)◦ =n (T )◦,

with M, N terms of λµ, and S, T statements of λµ.



The proof is easy. For the first line, we have

M =v N
iff (M)∗ =v (N)∗

iff ((M)∗)◦ =n ((N)∗)◦

iff (((M)∗)◦)∗{O} =n (((N)∗)◦)∗{O}
iff (M)◦{O} =n (N)◦{O}

The second line is similar.

Proposition 5.7. (Involution, reloaded) Duality on λµ
is an involution up to equality,

((A)◦)◦ ≡ A
µα. ((M)◦{ᾱ})◦ =v M
((M)◦{O})◦ =v (O)◦{M}
((S)◦)◦ =v S,

with A a type, M, O terms of λµ, S a statement of λµ.

This follows from Propositions 4.3, 4.4, and 5.2 We will
prove the lines in inverse order. The fourth line is easy,

((S)◦)◦
≡ ((((((S)∗)◦)∗)

∗)◦)∗
=v ((((S)∗)◦)◦)∗
≡ ((S)∗)∗
=v S.

The third line is only slightly harder,

((M)◦{O})◦
≡ ((((((M)∗)◦)∗{O})∗)◦)∗
=v (((O)∗ • ((M)∗)◦)◦)∗
≡ ((M)∗ • ((O)∗)◦)∗
≡ (((O)∗)◦)∗{((M)∗)∗}
=v (O)◦{M}.

The second line follows from the third,

µα. ((M)◦{ᾱ})◦
=v µα. (ᾱ)◦{M}
≡ µα. [α] M
=v M

The first line is trivial.
Since all of the results of the preceding section hold with

=v replaced by =n, the same holds for the above. However,
unlike the preceding section, we don’t need to redo any com-
plex case analyses; the additional results follow immediately
from the work done previously.

Selinger (2001) gives a duality for λµ that takes call-by-
value into call-by-name, but it is not involutive. There
are two distinct translations to take call-by-value into call-
by-name and call-by-name into call-by-value. Futher, one
translation followed by the other does not preserve types
up to identity, only up to isomorphism. However, closer in-
spection shows that the two translations are identical on all
components except function types, and agree with the dual-
ity translation on λµ given here. The key difference is that
here we have restricted functions in λµ, yielding a cleaner
version of duality. Sometimes less is more!
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Type A, B ::= X | A & B | A ∨B | ¬A

Term M, N, O ::= x | 〈M, N〉 | fst O | snd O | µ[α, β]. S | λx. S | µα. S
Statement S, T ::= [α] M | [α, β] O | O M

Antecedent Γ ::= x1 : A1, . . . , xm : Am

Succedent Θ ::= β1 : B1, . . . , βn : Bn

Right sequent Γ ➞ Θ ❙ M : A
Center sequent Γ ❙ S ❙➞ Θ

Id
Γ, x : A ➞ Θ ❙ x : A

Γ ➞ Θ ❙ M : A Γ ➞ Θ ❙ N : B
&I

Γ ➞ Θ ❙ 〈M, N〉 : A & B

Γ ➞ Θ ❙ O : A & B

Γ ➞ Θ ❙ fst O : A

Γ ➞ Θ ❙ O : A & B
&E

Γ ➞ Θ ❙ snd O : B

Γ ❙ S ❙➞ Θ, α : A, β : B
∨I

Γ ➞ Θ ❙ µ[α, β]. S : A ∨B

Γ ➞ Θ, α : A, β : B ❙ O : A ∨B
∨E

Γ ❙ [α, β] O ❙➞ Θ, α : A, β : B

Γ, x : A ❙ S ❙➞ Θ
¬I

Γ ➞ Θ ❙ λx. S : ¬A

Γ ➞ Θ ❙ O : ¬A Γ ➞ Θ ❙ M : A
¬E

Γ ❙ O M ❙➞ Θ

Γ ❙ S ❙➞ Θ, α : A
Activate

Γ ➞ Θ ❙ µα. S : A

Γ ➞ Θ, α : A ❙ M : A
Passivate

Γ ❙ [α] M ❙➞ Θ, α : A

Figure 1: Syntax and types of the λµ-calculus

Term M, N ::= x | 〈M, N〉 | 〈M〉inl | 〈N〉inr | [K]not | (S).α
Coterm K, L ::= α | [K, L] | fst[K] | snd[L] | not〈M〉 | x.(S)
Statement S, T ::= M •K

Right sequent Γ ➞ Θ ❙ M : A
Left sequent K : A ❙ Γ ➞ Θ
Center sequent Γ ❙ S ❙➞ Θ

IdR
x : A, Γ ➞ Θ ❙ x : A

IdL
α : A ❙ Γ ➞ Θ, α : A

Γ ➞ Θ ❙ M : A Γ ➞ Θ ❙ N : B
&R

Γ ➞ Θ ❙ 〈M, N〉 : A & B

K : A ❙ Γ ➞ Θ

fst[K] : A & B ❙ Γ ➞ Θ

L : B ❙ Γ ➞ Θ
&L

snd[L] : A & B ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A

Γ ➞ Θ ❙ 〈M〉inl : A ∨B

Γ ➞ Θ ❙ N : B
∨R

Γ ➞ Θ ❙ 〈N〉inr : A ∨B

K : A ❙ Γ ➞ Θ L : B ❙ Γ ➞ Θ
∨L

[K, L] : A ∨B ❙ Γ ➞ Θ

K : A ❙ Γ ➞ Θ
¬R

Γ ➞ Θ ❙ [K]not : ¬A

Γ ➞ Θ ❙ M : A
¬L

not〈M〉 : ¬A ❙ Γ ➞ Θ

Γ ❙ S ❙➞ Θ, α : A
RI

Γ ➞ Θ ❙ (S).α : A

x : A, Γ ❙ S ❙➞ Θ
LI

x.(S) : A ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A K : A ❙ Γ ➞ Θ
Cut

Γ ❙ M •K ❙➞ Θ

Figure 2: Syntax and types of the dual calculus



Values V, W ::= x | 〈V, W 〉 | µ[α, β]. [α] V | µ[α, β]. [β] W | fst V | fst W

(β&) fst 〈V, W 〉 −→v V
(β&) snd 〈V, W 〉 −→v W
(β∨) [α, β] µ[α′, β′]. S −→v S{α/α′, β/β′}
(β¬) (λx. S) V −→v S{V/x}
(βµ) [α] µα′. S −→v S{α′/α}

(η&) V : A & B −→v 〈fst V, snd V 〉
(η∨) M : A ∨B −→v µ[α, β]. [α, β] M
(η¬) V : ¬A −→v λx. V x
(ηµ) M −→v µα. [α] M

(ν&) 〈M, N〉 −→v µγ. (λx. [γ] 〈x, N〉) M
(ν&) 〈V, N〉 −→v µγ. (λy. [γ] 〈V, y〉) N
(ν¬) O M −→v (λz. z M) O

(ς&) fst µγ. S −→v µα. S{[α] fst {−}/[γ] {−}}
(ς&) snd µγ. S −→v µβ. S{[β] snd {−}/[γ] {−}}
(ς∨) [α, β] (µγ. S) −→v S{[α, β] {−}/[γ] {−}}
(ς¬) O (µα. S) −→v S{O {−}/[α] {}}

Figure 3: Reductions of the call-by-value λµ-calculus

(β&) fst 〈M, N〉 −→n M
(β&) snd 〈M, N〉 −→n N
(β∨) [α, β] µ[α′, β′]. S −→n S{α/α′, β/β′}
(β¬) (λx. S) M −→n S{M/x}
(βµ) [α] µα′. S −→n S{α′/α}

(η&) M : A & B −→n 〈fst M, snd M〉
(η∨) M : A ∨B −→n µ[α, β]. [α, β] M
(η¬) M : ¬A −→n λx. M x
(ηµ) M −→n µα. [α] M

(ς∨) [α, β] (µγ. S) −→n S{[α, β] {−}/[γ] {−}}
(ς&) fst (µγ. S) −→n µα. S{[α] fst {−}/[γ] {−}}
(ς&) snd (µγ. S) −→n µβ. S{[β] snd {−}/[γ] {−}}
(ς¬) (µγ. S) M −→n S{{−}M/[γ] {−}}

Figure 4: Reductions of the call-by-name λµ-calculus
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Value V, W ::= x | 〈V, W 〉 | 〈V 〉inl | 〈W 〉inr | [K]not | λx. N

(β&) 〈V, W 〉 • fst[K] −→v V •K
(β&) 〈V, W 〉 • snd[L] −→v W • L
(β∨) 〈V 〉inl • [K, L] −→v V •K
(β∨) 〈W 〉inr • [K, L] −→v W • L
(β¬) [K]not • not〈M〉 −→v M •K
(βL) V • x.(S) −→v S{V/x}
(βR) (S).α •K −→v S{K/α}

(η&) V : A & B −→v 〈(V • fst[α]).α, (V • snd[β]).β〉
(η∨) K : A ∨B −→v [x.(〈x〉inl •K), y.(〈y〉inr •K)]
(η¬) V : ¬A −→v [x.(V • not〈x〉)]not
(η¬) K : ¬A −→v not〈([α]not •K).α〉
(ηL) K −→v x.(x •K)
(ηR) M −→v (M • α).α

(ν&) 〈M, N〉 •K −→v M • x.(〈x, N〉 •K)
(ν&) 〈V, N〉 •K −→v N • y.(〈V, y〉 •K)
(ν∨) 〈M〉inl •K −→v M • x.(〈x〉inl •K)
(ν∨) 〈N〉inr •K −→v N • y.(〈y〉inr •K)

(ς&) V • fst[x.(S)] −→v S{(V • fst[α]).α/x}
(ς&) V • snd[y.(S)] −→v S{(V • snd[β]).β/y}

Figure 5: Reductions of the call-by-value dual calculus

Covalue P, Q ::= α | [P, Q] | fst[P ] | snd[Q] | not〈M〉 | M @ Q

(β∨) 〈M〉inl • [P, Q] −→n M • P
(β∨) 〈N〉inr • [P, Q] −→n N •Q
(β&) 〈M, N〉 • fst[P ] −→n M • P
(β&) 〈M, N〉 • snd[Q] −→n N •Q
(β¬) [K]not • not〈M〉 −→n M •K
(βR) (S).α • P −→n S{P/α}
(βL) M • x.(S) −→n S{M/x}

(η∨) P : A ∨B −→n [x.(〈x〉inl • P ), y.(〈y〉inr • P )]
(η&) M : A & B −→n 〈(M • fst[α]).α, (M • snd[β]).β〉
(η¬) P : ¬A −→n not〈([α]not • P ).α〉
(η¬) M : ¬A −→n [x.(M • not〈x〉)]not
(ηR) M −→n (M • α).α
(ηL) K −→n x.(x •K)

(ν∨) M • [K, L] −→n (M • [α, L]).α •K
(ν∨) M • [P, L] −→n (M • [P, β]).β • L
(ν&) M • fst[K] −→n (M • fst[α]).α •K
(ν&) M • snd[L] −→n (M • snd[β]).β • L

(ς∨) 〈(S).α〉inl • P −→n S{x.(〈x〉inl • P )/α}
(ς∨) 〈(S).β〉inr • P −→n S{y.(〈y〉inr • P )/β}

Figure 6: Reductions of the call-by-name dual calculus



(M)∗ ≡ ((M)∗{α}).α

(x)∗{P} ≡ x • P
(〈M, N〉)∗{P} ≡ 〈(M)∗, (N)∗〉 • P
(fst O)∗{P} ≡ (O)∗{fst[P ]}
(snd O)∗{P} ≡ (O)∗{snd[P ]}
(µ[α, β]. S)∗{P} ≡ 〈(〈((S)∗).β〉inr • P ).α〉inl • P
(λx. S)∗{P} ≡ [x.((S)∗)]not • P
(µα. S)∗{P} ≡ ((S)∗).α • P

([α, β] O)∗ ≡ (O)∗{[α, β]}
(O M)∗ ≡ (O)∗{not〈(M)∗〉}
([α] M)∗ ≡ (M)∗{α}

Figure 7: Translation from λµ-calculus to dual calculus

(x)∗ ≡ x
(〈M, N〉)∗ ≡ 〈(M)∗, (N)∗〉
(〈M〉inl)∗ ≡ µ[α, β]. [α] (M)∗
(〈N〉inr)∗ ≡ µ[α, β]. [β] (N)∗
([K]not)∗ ≡ λx. (K)∗{x}
((S).α)∗ ≡ µα. (S)∗

(α)∗{O} ≡ [α] O
([K, L])∗{O} ≡ (K)∗{µα. (L)∗{µβ. [α, β] O}}
(fst[K])∗{O} ≡ (K)∗{fst O}
(snd[L])∗{O} ≡ (L)∗{snd O}
(not〈M〉)∗{O} ≡ O (M)∗
(x.(S))∗{O} ≡ (λx. (S)∗) O

(M •K)∗ ≡ (K)∗{(M)∗}

Figure 8: Translation from dual calculus to λµ-calculus

(X)◦ ≡ X
(A & B)◦ ≡ (A)◦ ∨ (B)◦

(A ∨B)◦ ≡ (A)◦ & (B)◦

(¬A)◦ ≡ ¬(A)◦

(x)◦ ≡ x̄
(〈M, N〉)◦ ≡ [(M)◦, (N)◦]
(〈M〉inl)◦ ≡ fst[(M)◦]
(〈N〉inr)◦ ≡ snd[(M)◦]
([K]not)◦ ≡ not〈(K)◦〉
((S).α)◦ ≡ ᾱ.((S)◦)

(α)◦ ≡ ᾱ
([K, L])◦ ≡ 〈(K)◦, (L)◦〉
(fst[K])◦ ≡ 〈(K)◦〉inl
(snd[L])◦ ≡ 〈(K)◦〉inr
(not〈M〉)◦ ≡ [(M)◦]not
(x.(S))◦ ≡ ((S)◦).x̄

(M •K)◦ ≡ (K)◦ • (M)◦

Figure 9: Duality for the dual calculus

(A)◦ ≡ (A)◦

(x)◦{O′} ≡ [x̄] O′

(〈M, N〉)◦{O′} ≡ (M)◦{µα. (N)◦{µβ. [α, β] O′}}
(fst O)◦{O′} ≡ (λx. (O)◦{µ[α, β]. [α] x}) O′

(snd O)◦{O′} ≡ λy. (O)◦{µ[α, β]. [β] y}O′

(µ[α, β]. S)◦{O′} ≡ (λz. (λᾱ. (λβ̄. (S)◦) (snd[z])) (fst[z])) O′

(λx. S)◦{O′} ≡ O′ (µx̄. (S)◦)
(µα. S)◦{O′} ≡ (λᾱ. (S)◦) O′

([α, β] O)◦ ≡ (O)◦{〈ᾱ, β̄〉}
(O M)◦ ≡ (O)◦{λx. (M)◦{x}}
([α] M)◦ ≡ (M)◦{ᾱ}

Figure 10: Duality for the λµ-calculus
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