
April 2004April 2004 APPSEM, TallinnAPPSEM, Tallinn 11

The Future of The Future of
BlackBlack--Box Testing Box Testing

at Microsoftat Microsoft

Margus VeanesMargus Veanes
Foundations of Software EngineeringFoundations of Software Engineering

Microsoft ResearchMicrosoft Research

April 2004 APPSEM, Tallinn 2

Testing: Current ChallengesTesting: Current Challenges
►► Test is a huge cost of product developmentTest is a huge cost of product development
►► Test effectiveness and software quality hard to measureTest effectiveness and software quality hard to measure

►► Incomplete, informal and changing specificationsIncomplete, informal and changing specifications
►► Downstream cost of bugs is enormousDownstream cost of bugs is enormous
►► Lack of spec and implementation testing toolsLack of spec and implementation testing tools

►► Integration testing across product groupsIntegration testing across product groups
►► Patching nightmarePatching nightmare
►► Versions explodingVersions exploding

►► Growing need to test distributed and multithreaded applicationsGrowing need to test distributed and multithreaded applications
►► Handling of nondeterminism is becoming more and more importantHandling of nondeterminism is becoming more and more important

……

April 2004 APPSEM, Tallinn 3

Testing: Current PracticeTesting: Current Practice

►►BlackBlack--box testing box testing –– behavioral testingbehavioral testing
Comes from a behavioral specification with no Comes from a behavioral specification with no
knowledge of implementation detailsknowledge of implementation details
ExampleExample: scenario test: scenario test

►►WhiteWhite--box testing box testing –– structural testingstructural testing
Based on local view of the implementation code Based on local view of the implementation code
ExampleExample: unit test: unit test

April 2004 APPSEM, Tallinn 4

Testing within Microsoft: Testing within Microsoft:
Organizational StructureOrganizational Structure

Program-
manager

Product-
Feature

Developer Tester

Customer
requirements

Example
Scenarios

APIs, Code,
Unit Tests

Comprehensive
Scenarios

Mgr

P1

Dev Test

Mgr

P1

Dev Test

Mgr

P1

Dev Test

Interop

April 2004 APPSEM, Tallinn 5

Tester: How do I test this API? Tester: How do I test this API?

Subtasks:Subtasks:

►► What is the expected behavior of this API?What is the expected behavior of this API?
Build a modelBuild a model

►► How are concrete tests created?How are concrete tests created?
Traverse the model to create scenarios/test casesTraverse the model to create scenarios/test cases

►► When does a test succeed or fail?When does a test succeed or fail?
Use the model as an oracle Use the model as an oracle ––
failure may be due to afailure may be due to a modelmodel--errorerror as well as an as well as an implementationimplementation
errorerror, by default assume the former, by default assume the former

►► When am I done testing?When am I done testing?
Use codeUse code--coverage as well as modelcoverage as well as model--based behavioral coveragebased behavioral coverage

►► What can I conclude when I’m done testing?What can I conclude when I’m done testing?
The model and the implementation agree The model and the implementation agree wrtwrt the test suitethe test suite

April 2004 APPSEM, Tallinn 6

Being in the Shoes of a TesterBeing in the Shoes of a Tester
Quiz: what is the expected behavior?Quiz: what is the expected behavior?

►► Given an empty notepad document, do the Given an empty notepad document, do the
following actions in the given order:following actions in the given order:

1.1. Type Type ‘‘teretere’’
2.2. Type Type Ctrl aCtrl a (select all)(select all)
3.3. Change font size to Change font size to 26pt26pt
4.4. Type Type Ctrl zCtrl z (undo)(undo)

►► What happens after action 4?What happens after action 4?
A) Font change is undone,A) Font change is undone,
B) Font change and selection are undone, orB) Font change and selection are undone, or
C) None of the above!C) None of the above!

April 2004 APPSEM, Tallinn 7

Major change is pendingMajor change is pending

►►MachineMachine--readable specifications of several readable specifications of several
kinds will become “part of the build”kinds will become “part of the build”

An extension of the idea of metadataAn extension of the idea of metadata
Support for both blackSupport for both black--box and whitebox and white--box viewsbox views
Behavioral testing will move beyond the black Behavioral testing will move beyond the black
box; contracts will move beyond whitebox; contracts will move beyond white--boxbox

►►Support for behavioral verification will be Support for behavioral verification will be
built into the compiler and runtime built into the compiler and runtime
environmentenvironment

April 2004 APPSEM, Tallinn 8

New DevelopmentsNew Developments

►► Spec#Spec# -- Extension of C# with:Extension of C# with:
ContractsContracts (pre(pre-- and postand post--conditions)conditions)
HighHigh--level data structures (sets, maps, …)level data structures (sets, maps, …)
Nondeterministic choiceNondeterministic choice

►► Spec ExplorerSpec Explorer
ModelModel--based testingbased testing of Spec# modelsof Spec# models
Conformance checkingConformance checking

►► Spec# as frontSpec# as front--end for static analysis tools end for static analysis tools
(ongoing projects):(ongoing projects):

Static verification of contractsStatic verification of contracts
Model checkingModel checking
……

April 2004 APPSEM, Tallinn 9

ContractsContracts

►► ContractsContracts
An “extended type system”An “extended type system”
“White“White--box” behavioral constraints using the box” behavioral constraints using the
vocabulary of the implementation vocabulary of the implementation

►► Contracts with model variablesContracts with model variables
“Black“Black--box” behavioral constraints, using model box” behavioral constraints, using model
variables. (May be given for interfaces.)variables. (May be given for interfaces.)

►► Executable contracts, or model programsExecutable contracts, or model programs
“Black“Black--box” specifications of possible runs, using box” specifications of possible runs, using
model variables.model variables.

April 2004 APPSEM, Tallinn 10

ModelModel--based testingbased testing

►►ModelModel: Any description of a system’s behavior : Any description of a system’s behavior
that precisely defines its possible states and that precisely defines its possible states and
transitions at a high level.transitions at a high level.

►►TestingTesting: Use model to: Use model to
Generate testsGenerate tests by exploring all possible states and by exploring all possible states and
parameter combinationsparameter combinations
Check conformanceCheck conformance by comparing actual versus by comparing actual versus
predicted behavior at run time.predicted behavior at run time.

April 2004 APPSEM, Tallinn 11

Where contracts and models meetWhere contracts and models meet

►► Move toward more abstract contractsMove toward more abstract contracts
Contracts will include model variables, or abstract state Contracts will include model variables, or abstract state
variables not used directly by the implementationvariables not used directly by the implementation

►► Move toward model programsMove toward model programs
Contracts will become complete enough to be Contracts will become complete enough to be
executableexecutable

Abstraction (via model variables) allows us to speak Abstraction (via model variables) allows us to speak
about the behavior that all implementations must about the behavior that all implementations must
provide.provide.

April 2004 APPSEM, Tallinn 12

Benefits of Spec# specificationsBenefits of Spec# specifications

►► Easy to understandEasy to understand
A natural extension of contractA natural extension of contract--style specifications such style specifications such
as preas pre-- and postand post--conditions, with a familiar C# syntax.conditions, with a familiar C# syntax.

►► ExpressiveExpressive
Capable of handling the full range of software artifacts, Capable of handling the full range of software artifacts,
including method parameters and dynamic objects.including method parameters and dynamic objects.

►► PrecisePrecise
WellWell--understood as a formal transition systemunderstood as a formal transition system

►► ExecutableExecutable
Suitable for many kinds of analysis and whatSuitable for many kinds of analysis and what--if testingif testing

April 2004 APPSEM, Tallinn 13

Spec# and Spec ExplorerSpec# and Spec Explorer

Runtime data

Debugger events
and comands

Modeling

Debugging

Model
program

Exploration

Visualization

Explored
states

Test
failures

Failure
Analysis

Repro
cases

Error
Reporting

Conformance
Testing

Test
sequences

Implementation
DLL

Model
program

Conformance
Testing

Test
sequences

Test Suite

Explored states
and execution

paths

Generation

April 2004 APPSEM, Tallinn 14

Exploration using Spec#Exploration using Spec#

►►GoalGoal
Express all possible runs as a finiteExpress all possible runs as a finite--state state
machinemachine

►►ApproachApproach
At each state, execute any enabled method with At each state, execute any enabled method with
any allowed argument valuesany allowed argument values
►►"Enabled" means precondition is true "Enabled" means precondition is true

Collect results into a data setCollect results into a data set

April 2004 APPSEM, Tallinn 15

Technical challengeTechnical challenge

•• 5 components, 100 states/component5 components, 100 states/component
•• Worst case: 10 billion statesWorst case: 10 billion states

April 2004 APPSEM, Tallinn 16

Controlling the state explosionControlling the state explosion

►►Focus on finding the optimal states and Focus on finding the optimal states and
transitions instead of doing exhaustive searchtransitions instead of doing exhaustive search

►►Use techniques likeUse techniques like
Restricting search to a fixed number of objectsRestricting search to a fixed number of objects
Identifying “similar” states and discarding themIdentifying “similar” states and discarding them
Maintaining an efficient state representationMaintaining an efficient state representation
Using code coverage to guide explorationUsing code coverage to guide exploration

April 2004 APPSEM, Tallinn 17

Using the results of explorationUsing the results of exploration

►►Test sequence generation Test sequence generation
Tests come from an intelligent traversal Tests come from an intelligent traversal

►►Conformance testing Conformance testing
We check actual versus expected behaviorWe check actual versus expected behavior

►►Error reportingError reporting
Tool exports test sequence to reproduce bugTool exports test sequence to reproduce bug

April 2004 APPSEM, Tallinn 18

Spec Explorer demoSpec Explorer demo

April 2004 APPSEM, Tallinn 19

Experience and OutlookExperience and Outlook

►►Test ProjectsTest Projects
Web services, Passport, Media player, IndigoWeb services, Passport, Media player, Indigo
Distributed File replication systemDistributed File replication system
Models up to 100 pagesModels up to 100 pages
Growing user baseGrowing user base

►►Spec ExplorerSpec Explorer
New plugNew plug--in architecture supporting in architecture supporting remotingremoting
Support for modelSupport for model--checkingchecking
Support for static verificationSupport for static verification

April 2004 APPSEM, Tallinn 20

Thanks!Thanks!

►►Spec# and Spec Explorer public release Spec# and Spec Explorer public release
(summer 2004)(summer 2004)

http://research.microsoft.com/fsehttp://research.microsoft.com/fse

