April 2004

The Future of
Black-Box Testing
at Microsoft

Margus Veanes
Foundations of Software Engineering
Microsoft Research

APPSEM, Tallinn

Testing: Current Challenges

Test is a huge cost of product development
Test effectiveness and software quality hard to measure

Incomplete, informal and changing specifications
Downstream cost of bugs is enormous
Llack off spec and implementation testing tools

Integration testing across product groups
Patching nightmare
Versions exploding

Growing need to test distributed and multithreaded applications
Handling of nondeterminism is becoming more and more important

April 2004 APPSEM, Tallinn

Tiesting: Current Practice

Black-box testing — behavioral testing

Comes fromi a behavioral specification with no
knowledge of implementation: details

Examp/e: scenario test

White-box testing — structural testing
Based on local view of the implementation code
Exampl/e: unit test

April 2004 APPSEM, Tallinn

Testing within Microsoft:
Organizational Structure

Customer
requirements Z 2
Program- /Dﬁemp/

manager

Example
Scenarios

Product-

APIs, Code, Feature Comprehensive
Unit Tests Scenarios

Developer Tester

April 2004 APPSEM, Tallinn

Tester: How do I test this API?

Subtasks:

What is the expected behavior of this API?
Build a model

How are concrete tests created?
Traverse the model to create scenarios/test cases

When does a test succeed or fail?

Use the model as an oracle — _ _
failure may be due to a model-error as well as an implementation

error, by default assume the former

When am I done testing?
Use code-coverage as well as model-based behavioral coverage

What can I conclude when I'm done testing?
The model and the implementation agree wrt the test suite

April 2004 APPSEM, Tallinn

Being in the Shoes of a Tester

Quiz: what is the expected behavior?

Given an empty notepad document, do the
following actions in the given order:

Type ‘tere’

Type Ctrl a (select all)
Change font size to 26pt
Type Ctrl z (undo)

What happens after action 4?
A) Font change is undone,
B) Font change and selection are undone, or
C) None of the above!

April 2004 APPSEM, Tallinn

Major change Is pending

» Machine-readable specifications of several
kinds will' become “part of the build™

An extension of the idea of metadata

Support for both blac
Behavioral testing wil

K-box and white-box views

move beyond the black

box; contracts will move beyond white-box

» Support for behavioral verification will' be
built into the compiler and runtime

environment

April 2004 APPSEM, Tallinn

New Developments

Spec# - Extension of C# with:
Contracts (pre- and post-conditions)
High-level data structures (sets, maps, ...)
Nondeterministic choice

Spec Explorer
Model-based testing of Spec# models
Conformance checking

Spec# as front-end for static analysis tools
(ongoing projects):

Static verification of contracts

Model checking

April 2004 APPSEM, Tallinn

Contracts

Contracts
An “extended type system”

“White-box™ behavioral constraints using the
vocabulary of the implementation

Contracts with model variables

“Black-box™ behavioral constraints, using model
variables. (May be given for interfaces.)

Executable contracts, or model programs

“Black-box™ specifications of possible runs, using
model variables.

April 2004 APPSEM, Tallinn

Model-based testing

» Model: Any description of a system’s behavior

that precisely defines its possible states and
transitions at a high level.

» Testing: Use model to

Generate tests by exploring all possible states and
parameter combinations

Check conformance by comparing actual versus
predicted behavior at run time.

April 2004 APPSEM, Tallinn

Where contracts and models meet

Move toward more abstract contracts

Contracts will include modell variables, or abstract state
variables not used directly by the implementation

Move toward model programs

Contracts will become complete enough to be
executable

Abstraction (via model variables) allows us to Speak
about the behavior that all implementations must
Provide.

April 2004 APPSEM, Tallinn

Benefits off Spec# specifications

» Easy to understand

A natural extension of contract-style specifications such
as pre- and post-conditions, with a familiar' C# syntax.

» EXpressive

Capable of handling| the full range of software artifacts,
iIncluding method parameters and dynamic objects.

» Precise
Well-understood as a formal transition system

» Executable
Suitable for many kinds of analysis and what-if testing

April 2004 APPSEM, Tallinn

Spec# and Spec Explorer

Model Explored states Test Test
program and execution sequences failures
paths

Modeling : Test Suite Conformance Failure
ERelatel Generation Testing Analysis

Explored model

states Repro

program cases

Implementation
Debugger events DLL

and comands

Runtime data

Error
Debugging Visualization Reporting

April 2004 APPSEM, Tallinn

Exploration using Spec#

Goal

Express all possible runs as a finite-state
machine

Approach

At each state, execute any enabled method with
any allowed argument values
"Enabled™ means precondition Is true

Collect results into a data set

April 2004 APPSEM, Tallinn

Technical challenge

* 5 components, 100 states/component
 Worst case: 10 billion states

April 2004 APPSEM, Tallinn

Controlling the state explosion

» Focus on finding the optimal states and
transitions instead off doing| exhaustive search

» Use technigues like
Restricting search to a fixed number of objects
Identifying “similar” states and discarding them
Maintaining an efficient state representation
Using code coverage to guide exploration

April 2004 APPSEM, Tallinn

Using the results of exploration

Jlest seguence generation
Tests come, firom an intelligent traversal

Conformance testing
We check actual versus expected behavior

Error reporting
Tool exports test seguence to reproduce bug

April 2004 APPSEM, Tallinn

Spec Explorer demo

April 2004 APPSEM, Tallinn

Experience and Outiook

Trest Projects

Web services, Passport, Media player, Indigo
Distributed File replication system

Models up to 100 pages
Growing user base

Spec Explorer
New: plug-in architecture supporting remoting
Support for model-checking
Support for static verification

April 2004 APPSEM, Tallinn

Thanks!

Spec# and Spec Explorer public release
(summer 2004)

April 2004 APPSEM, Tallinn

