
APPSEM’2004

A resource-control model based on
deadlock avoidance

Antoine Galland Mathieu Baudet

antoine.galland@gemplus.com mathieu.baudet@lsv.ens-cachan.fr

Gemplus Research Labs – LIP6 ENS Cachan – INRIA Futurs

A resource-control model based on deadlock avoidance – p. 1/21

APPSEM’2004

Industrial Context

• Gemplus, world’s leader in smart card manufacturing

• Smart card applications
− Banking (Debit and credit cards, Electronic purse)
− Security & access control (Identity, Biometrics, Pay TV)
− Health care cards
− SIM cards (GSM/GPRS/UMTS networks)
− Multi-applications cards (Multos, Java Card)

A resource-control model based on deadlock avoidance – p. 2/21

APPSEM’2004

State-of-the-art smart card

• Embedded system with major hardware constraints

• post-issuance principle ⇒ mobile code security

• Next generation: multi-threading, garbage-collection,
IP-networking...

⇒ always more and more reliability:

• Information protection
– hardware: tamper resistance, software: cryptography

• Safety of application
– Mobile code verification: Leroy (2002), Casset et al. (2002)

• Guarantee of execution
– Resource control

A resource-control model based on deadlock avoidance – p. 3/21

APPSEM’2004

Problem

• “Contract-based approach”
Problem of trust: verify that the contract is valid (safe)
− runtime : monitoring
− loading : code analysis, proof

• Resource management:
− reserve and lock all the required resource at start-up

(Java Card)
⇒ waste of resource when multiple applets are used

• Goals:
(1) Guarantee resource availability for a safe execution
(2) Optimizing resource usage

A resource-control model based on deadlock avoidance – p. 4/21

APPSEM’2004

Problem

• One limited resource, several applications

• Usual contracts:

c1

δ1 and

c2

δ2 require c1 + c2.

• Could be more sparing:

max(c1, c2 + δ1)

A resource-control model based on deadlock avoidance – p. 5/21

APPSEM’2004

Our approach

• Improve contracts and task-scheduling

• Three ingredients:
− Tasks suspended on impossible allocations
− Deadlock-avoidance algorithm
− Static analysis to annotate the code and compute

precise contracts

• Hypothesis:
− Possible to bound (de)allocations statically
− Finite execution times (so no starvation)
− No other interaction

A resource-control model based on deadlock avoidance – p. 6/21

APPSEM’2004

Outline

• Deadlock avoidance

• Theoretical materials
− Process algebra
− Efficient safety criterion
− Abstract domain

• Practical results
− Java bytecode analyzer
− Deadlock-avoidance library for Java

A resource-control model based on deadlock avoidance – p. 7/21

APPSEM’2004

Deadlock avoidance

A resource-control model based on deadlock avoidance – p. 8/21

APPSEM’2004

Principle of deadlock avoidance

• Progress graphs (Dijkstra):

0 1

0

1

deadlock

unsafe area

unreachable area

forbidden area

a schedule

thread 2

thread 1

A resource-control model based on deadlock avoidance – p. 9/21

APPSEM’2004

Principle of deadlock avoidance

• Progress graphs (Dijkstra):

0 1

0

1

deadlock

unsafe area

unreachable area

forbidden area

a schedule

thread 2

thread 1

→ Detect and avoid unsafe areas to avoid deadlocks

• Conservative approximations possible, but beware
of liveness

A resource-control model based on deadlock avoidance – p. 9/21

APPSEM’2004

Why new algorithms ?

• Existing works: Dijkstra (1965), Habermann (1969),
Holt (1972), Gold (1978)

• Allocations inside real programs: nested forks,
branches, loops, function calls. . .
→ semantic objects.

• Need to compute contracts from applications, and to
add code annotations
→ static code analysis

→ “Semantic approach” to deadlock avoidance

A resource-control model based on deadlock avoidance – p. 10/21

APPSEM’2004

Theoretical materials

A resource-control model based on deadlock avoidance – p. 11/21

APPSEM’2004

Process algebra

• Abstract model for the system state:

p ::= ǫ empty process

| x variation x ∈ Z of resource

| (p1 p2) sequence

| (p1 ‖ p2) concurrent execution

• Small-step semantics
x

−→, execution traces l

• Safery criterion: enough resource to end

C(p)
def
= min

p
l

−→ǫ

C(l) ≤ M

A resource-control model based on deadlock avoidance – p. 12/21

APPSEM’2004

Efficient computation of C(p)

• Recursive translation L(p) to normalized lists

(1,−1)(3,−1)(6, 0) (5, 2) (2, 1)

• Exact computation: C(L(p)) = C(p)

• Worst-case complexity: O(depth × size)

• Linear in practice

A resource-control model based on deadlock avoidance – p. 13/21

APPSEM’2004

Remaining issues

• Wish to use normalized lists for: static analysis,
code annotations, contracts.

• Semantic quasi-ordering: L(p1) ⊑ L(p2) iff
C(C[p1]) ≤ C(C[p2]) for every context C

• Minimal data-structure ? (antisymmetry)

• How to decide ⊑ ?

• Existence of a l.u.b. operator ⊔ ?
→ Useful for abstract interpretation (branches,
loops)

A resource-control model based on deadlock avoidance – p. 14/21

APPSEM’2004

Properties of normalized lists

• A rich data-structure:

− allocations

− concatenation

− parallel product

− ordering ⊑

− least upper bound ⊔

− greatest lower bound ⊓

− least element ⊥

− greatest element ⊤

• Linear complexities w.r.t. length.

→ Domain for abstract interpretation

see Galland and Baudet (APLAS 2003)

A resource-control model based on deadlock avoidance – p. 15/21

APPSEM’2004

Practical results

A resource-control model based on deadlock avoidance – p. 16/21

APPSEM’2004

Overview

• Prototype in Java for Java bytecode,

• Abstract scalar resource,

• Global architecture:

LOADER

Java Runtime Environment

Off Card

annotated
.class

Java API with thread api

Resource
Server

Resource

?

?

new thread

Thread 1 alloc

Thread 2

Thread 3

Thread 4 call

On Card

?

inter-methods analysis
(call graph)

intra-method analysis
(backward interpretation)

original
.class

Static Analysis

Native Methods
Signature

A resource-control model based on deadlock avoidance – p. 17/21

APPSEM’2004

Annotations and runtime library
 Before After

1 class SimpleExample implements Executable { 1 class SimpleExample implements Executable {
2 2
3 int [] getGlobalAnnotation() { 3 int [] getGlobalAnnotation() {
4 return null; 4 return [(5,2),(2,1)]; // global contract
5 } 5 }
6 6
7 void run(String[] args){ 7 void run(String[] args){
8 Server.alloc(1) 8 Server.alloc(1,[(4,1)(2,1)]);
9 SimpleThread thread = new SimpleThread(); 9 SimpleThread thread = new SimpleThread();

10 10 Server.fork([(2,1)], thread, [(4,1)]);
11 thread.start(); 11 thread.start();
12 12 Server.call([(2,2)], [0,-1]);
13 foo(args); 13 foo(args);
14 14 Server.discard();
15 Server.alloc(-1); 15 Server.alloc(-1,[]);
16 16 Server.end();
17 } 17 }
18 18
19 void foo(Object obj) { 19 void foo(Object obj) {
20 if (obj == null) { 20 if (obj == null) {
21 Server.alloc(-2); 21 Server.alloc(-2,[]);
22 } else { 22 } else {
23 Server.alloc(2); 23 Server.alloc(2,[]);
24 } 24 }
25 25 Server.end();
26 } 26 }
27 27
28 static class SimpleThread extends Thread { 28 static class SimpleThread extends Thread {
29 public void run() { 29 public void run() {
30 Server.alloc(4); 30 Server.alloc(4, [(0,-3)]);
31 Server.alloc(-3); 31 Server.alloc(-3, []);
32 32 Server.end();
33 } 33 }
34 } 34 }

(5, 2)(2, 1) = L(1)

︸ ︷︷ ︸

·((L(4) · L(−3))
︸ ︷︷ ︸

× ((L(−2) ⊔ L(2))
︸ ︷︷ ︸

· L(−1)
︸ ︷︷ ︸

))

A resource-control model based on deadlock avoidance – p. 18/21

APPSEM’2004

An example

• Simple Java program with two threads

1

2

3

4

0

Resource

Time

 CPU time-sharing

Thread 1 Thread 2

- Allocated resource

 Thread 2

Thread 1

deadlock detected

one schedule

- Progress graph

A resource-control model based on deadlock avoidance – p. 19/21

APPSEM’2004

Conclusion

• A more sparing approach to resource control:
− fast deadlock-avoidance algorithm
− new abstract domain for static analysis

• Applied to Java

• Future works:
− Non-terminating idioms
− Contract verification
− Many resources
− Apply these results to a realistic resource. Why

not memory ? (escape analysis)

A resource-control model based on deadlock avoidance – p. 20/21

APPSEM’2004

Thank you !

Q&A

A resource-control model based on deadlock avoidance – p. 21/21

	Industrial Context
	State-of-the-art smart card
	Problem
	Problem
	Our approach
	Outline
	Deadlock avoidance
	Principle of deadlock avoidance
	Principle of deadlock avoidance

	Why new algorithms ?
	Theoretical materials
	Process algebra
	Efficient computation of C(p)
	Remaining issues
	Properties of normalized lists
	Practical results
	Overview
	Annotations and runtime library
	An example
	Conclusion
	Thank you ! Q&A

